The power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such hazards is crucial in the early phases of the distribution. In this paper, a detailed review of modern approaches for the identification of DC arc faults in PV is presented. In addition, a thorough comparison is performed between various DC arc-fault models, characteristics, and approaches used for the identification of the faults.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreThis study looks into the many methods that are used in the risk assessment procedure that is used in the construction industry nowadays. As a result of the slow adoption of novel assessment methods, professionals frequently resort to strategies that have previously been validated as being successful. When it comes to risk assessment, having a precise analytical tool that uses the cost of risk as a measurement and draws on the knowledge of professionals could potentially assist bridge the gap between theory and practice. This step will examine relevant literature, sort articles according to their published year, and identify domains and qualities. Consequently, the most significant findings have been presented in a manne
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction. PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductiv
... Show MoreABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction. PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductivity displayed an
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show More