Preferred Language
Articles
/
tBggrJgBVTCNdQwCq8CC
Understanding the effectiveness of elastomeric and plastomeric polymers on the high-temperature performance of asphalt binders
...Show More Authors

The global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap by evaluating SBS and EVA at 2%, 4%, and 6% by weight of asphalt cement, with a focus on their rheological, chemical, and mechanical properties. At the binder level, properties examined included the physical properties: penetration, softening point, viscosity, mass loss due to aging, storage stability, and specific gravity. The Dynamic Shear Rheometer (DSR) was used to assess the high-temperature performance grade (PG) and conduct Multiple Stress Creep Recovery (MSCR) tests. The results revealed that SBS significantly enhanced high-temperature performance, with 4% SBS and 6% SBS achieving PG 100, compared to PG 70 for both the unmodified and EVA-modified binders. At the most critical testing temperature of 76 °C and the highest stress level of 3.2 kPa, SBS-modified binders exhibited the lowest non-recoverable creep compliance (Jnr) and the highest elastic recovery (R), significantly outperforming EVA-modified binders and the reference binder (RB). At the mixture level, dynamic creep testing confirmed the ranking of asphalt mixes in terms of resistance to permanent deformation, with the following order: 4% SBS > 6% SBS > 6% EVA > 4% EVA > 2% SBS > 2% EVA > unmodified mix. These results, further supported by ANOVA analysis, indicate that SBS-modified mixtures exhibited superior rutting resistance compared to EVA-modified and unmodified mixes. This study provides quantitative insights into the comparative performance of SBS and EVA in extreme hot climatic tempertures, reinforcing the superior effectiveness of SBS in enhancing high-temperature properties. Consequently, SBS emerges as the more suitable modifier for regions experiencing extreme hot climatic conditions. Field validation is recommended to confirm these laboratory findings in real-world applications.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Feb 02 2017
Journal Name
Journal Of Geotechnical Engineering
Influence of Combined Stabilization on the Structural Properties of Subgrade Soil
...Show More Authors

Soil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in ter

... Show More
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Modified Hybrid Nanoparticles on the Properties of Base Oil
...Show More Authors

 

Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Effects of Fuel Oil on the Geotechnical Properties of Clay Soil
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Effect of Lanthanum Addition on the Microstructure of Mg-4Al Alloy
...Show More Authors

 This research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La:  Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Journal Of Engineering
Effect of Construction Joints on the Behavior of Reinforced Concrete Beams
...Show More Authors

In this study, the effect of construction joints on the performance of reinforced concrete beams was experimentally investigated. Seven beam specimens, with dimensions of 200×100×1000 mm, were fabricated. The variables were considered including; the location and configuration of the joints. One beam was cast without a joint (Reference specimen), two specimens were fabricated with a one horizontal joint located either at tension, or compression zone. The fourth
beam had two horizontal joints placed at tension, and compression area. The remaining specimens were with one or two inclined joints positioned at the shear span or beam’s mid-span. The specimens were subjected to a monotonic central concentrated loading until the failure. T

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Influence of Stone Powder on the Mechanical Properties of Clayey Soil
...Show More Authors

In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Open Geosciences
Impact of wall movements on the location of passive Earth thrust
...Show More Authors
Abstract<p>The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful</p> ... Show More
View Publication Preview PDF
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Aug 07 2020
Journal Name
Key Engineering Materials
The Effect of Particle Size Distribution on some Properties of Gypsum
...Show More Authors

Gypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Effect of Pressure on the Properties of HgBa2Ca2Cu3O8+δ HTSC System
...Show More Authors

High temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.

View Publication Preview PDF