The relationship of hyperuricemia to kidney disease, diabetes, hypertension and the risk of cardiovascular diseases remain controversial. The aim of this study is to evaluate the use of uric acid (UA) levels to find the higher risk of cardiovascular disease (CVD) in patients with end stage renal disease that have diabetic nephropathy (DN), nephropathy with hypertension (NH) and patients with both diabetic nephropathy with hypertension (DNH). This study deals with 115 patients with end-stage renal disease under hemodialysis sub-grouped into 35 patients with (DN), 40 patients with (NH), and 40 patients with (DNH). Some biochemical parameters were determined in the serum of all participants such as HbA1c, fasting blood glucose (FBG), UA, urea, serum creatinine, total serum protein, calcium, phosphate, albumin, and globin levels. The present study revealed a significant increase (P<0.05) in HbA1c, FBG, urea and creatinine in DN and DNH patients compared to NH group. However, non-significant difference was found in total serum protein, serum albumin, globulin, calcium, and phosphate levels between the groups. A positive correlation was found between UA level with FBG, HbA1c and creatinine in DN and DNH groups in comparison to NH group. Levels of UA can be considered as a reliable marker, which is less expensive and helps clinicians in controlling the progression to microvascular complications. The early detection of any complication and adopting the appropriate treatment to reduce the risk of CVD can reduce morbidity and mortality.
The modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The current research is interested in the objective study of revitalizing the religious sites and the extent to which they achieve the pragmatic and semantic ends, because they are derived from history and civilization and have a clear impact over the recipient. The research question is (what are the techniques of developing the spaces of the religious shrines in accordance with revitalizing the interior spaces within them?).
The research aims at determining the weak and strong points in the process of revitalizing the interior spaces in the religious shrines.
The theoretical framework consists of two parts: the first addressed the revitalization in the interior design, and the second addressed the religious shrines and th
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThis work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show More