The novel Vierordt’s approach, or simultaneous equation method, was created and validated for the concurrent determination of vincristine sulfate (VCS) and bovine serum albumin (BSA) in pure solutions utilizing UV spectrophotometry. It is simple, precise, economical, rapid, reliable, and accurate. This method depends on measuring absorbance at two wavelengths, 296 nm and 278 nm, which correspond to the λmax of VCS and BSA in deionized water, respectively. The calibration curves of VCS and BSA are linear at concentration ranges of 10–60 μg/mL and 200–1600 μg/mL, with correlation coefficient values (R2) of 1 and 0.999, respectively. The limits of detection (LOD) and quantification (LOQ) were 0.465 μg/mL and 1.410 μg/mL for VCS and 41.096 μg/mL and 124.533 μg/mL for BSA. The precision investigation indicated that the relative standard deviation (RSD) value was within limitations (RSD < 2%). The percentage recovery varied between 99.40 and 103.20% for VCS and 97.90 and 102.54% for BSA at various concentration levels, demonstrating that the simultaneous equation technique is accurate. The suggested approach can be successfully applied to estimate VCS and BSA simultaneously in pure and pharmaceutical-marketed products comprising these two components.
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreSimultaneous determination of Furosemide, Carbamazepine, Diazepam, and Carvedilol in bulk and pharmaceutical formulation using the partial least squares regression (PLS-1 and PLS-2) is described in this study. The two methods were successfully applied to estimate the four drugs in their quaternary mixture using UV spectral data of 84synthetic mixtures in the range of 200-350nm with the intervals Δλ=0.5nm. The linear concentration range were 1-20 μg.mL-1 for all, with correlation coefficient (R2) and root mean squares error for the calibration (RMSE) for FURO, CARB, DIAZ, and CARV were 0.9996, 0.9998, 0.9997, 0.9997, and 0.1128, 0.1292, 0.1868,0.1562 respectively for PLS-1, and for PLS-2 were 0.9995, 0.9999, 0.9997, 0.9998, and 0.1127, 0.
... Show MoreA simple, new, and sensitive spectrophotometric technique for the determination of methyldopa was presented in this research article. The suggested technique includes reacting metoclopramide with NaNO2 in the presence of hydrochloric acid to produce diazonium salt, and then the drug methyldopa reacts with the diazonium salt to produce a yellow azo dye. The maximum wavelength of the dye was 458 nm. This method is effectively used for the determination of methyldopa in different pharmaceutical formulations. It has been found that there are no significant interactions between common excipients and pure methyldopa. The results were processed statistically, and compared with those obtained from officially approved methods, they were found to be
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 µg∙mL-1 for Ciprofloxacin and 2 to 22 µg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) were
... Show MoreIn this study, a new, rapid and sensitive batch and flow injection-merging zones spectrophotometric methods for the determination of hydroquinone in a pure material and in pharmaceutical preparation were proposed. These methods were based on the oxidative-coupling reaction of HQ with 2,4-dinitrophenylhydazine (DNPH) in the presence of sodium periodate and sodium hydroxide to form a dark brown water slouble dye that is stable and has maximum absorption at 530 nm, graphs of absorbance versus concentration show that Beer's low is obeyed over the concentration rang of 1-40 and 3-300 μg.ml-1 of hydroquinone, with detection limits of 0.162 and 0.510 μg.ml-1 of hydroquinone for batch and FIA methods, respectively. The optimized FIA system is
... Show MoreThe study aimed to recommend a new spectrophotometric-kinetic method for determination of carbamazepine (CABZ) in its pure form and pharmaceutical forms. The proposed procedure based on the coupling of CABZ with diazotized sulfanilic acid in basic medium to yield a colored azo dye. Factors affecting the reaction yield were studied and the conditions were optimized. The colored product was followed spectrophotometrically via monitoring its absorbance at 396 nm. Under the optimized conditions, two method (the initial rate and fixed time (10 minute)) were applied for constructing the calibration graphs. The graphs were linear in concentration ranges 2.0 to 18.0 µg.mL-1 for both methods. The proposed was applied successfully in
... Show MoreTwo methods have been applied for the spectrophotometric determination of atropine, in
bulk sample and in dosage form. The methods are accurate, simple, rapid, inexpensive and
sensitive. The first method depending on the extraction of the formed ion-pair complex with
bromphenol blue (BPB) as a chromogenic reagent in chloroform, use phthalate buffer of pH
3.0; which showed absorbance maxima at 413 nm against reagent blank. The calibration
graph is linear in the ranges of 0.5-40 µg.mL
-1
with detection limit of 0.363µg.mL
-1
. The
second method depending on the measure of the absorbance maxima of the formed charge-transfer complex with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) at 457 nm against
A simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL