Four different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazotization reaction followed by coupling with diphenylamine in acidic medium to form, a blue colored azo dye compound which exhibits maximum absorption (λmax) at 530 nm for sulfamethoxazole complex and 531 nm for sulfanilamide complex against the reagent blank and the concentration of these drugs were determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method has been applied in optimization of the variables affecting the color producing reaction. The results show better optical characteristics for calibration curves and statistical data were obtained under optimum conditions obtained by multi simplex optimization, in comparison with those obtained via univariate method for two studied drugs. Beer’s law obeyed in the concentration range of 0.5-12.0 μg.mL-1, 0.5-7.0 μg.mL-1 for sulfamethoxazole and sulfanilamide respectively with molar absorptivity of 4.9617×104 L.mol-1.cm-1 for sulfamethoxazole and 5.9185×104 L.mol-1.cm-1 for sulfanilamide. The detection limits were 0.036 μg.mL-1 and 0.016 µg.mL-1 for the two complexes respectively by simplex method. No interferences from the studied excipients on the determination of these drugs were found therefore, the proposed methods were applied successfully II for the determination of the sulfamethoxazole and sulfanilamide in pharmaceutical compound and in synthetic samples. Chapter Three: Is based on the formation of condensation complexes of each drug with sodium 1,2-naphthoquinon-4-sulfonate as a chromogenic reagent. The absorbance values, for the formed complexes were measured at 460 nm for sulfamethoxazole and 455 nm for sulfanilamide; against reagent blank. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and design of experiment (DOE) method and the results were obtained under optimum conditions by (DOE) optimization which shows better optical characteristics for calibration curves and statistical data in comparison with those obtained via univariate method for two studied drugs. The calibration graphs are linear in the ranges of (5.0-50.0) µg.mL-1 for sulfamethoxazole and (5.0-30.0) µg.mL-1 for sulfanilamide with detection limit 0.359 µg.mL-1for sulfamethoxazole complex and 0.536 µg.mL-1 for sulfanilamide complex. The molar absorptivity was found to be (7.0918×104 L.mol-1.cm-1) for sulfamethoxazole and (7.0774×104 L.mol-1.cm-1) for sulfanilamide by the design of experiment (DOE) method. Finally no interferences from the studied excipients on the determination of these drugs were found. The proposed methods have been successfully applied for the determination of sulfamethoxazole and sulfanilamide in their pharmaceutical preparation and synthetic samples. Chapter Four: Includes two parts; Derivative spectrophotometry and partial least-squares (PLS). Derivative spectrophotometry is based on the first and second derivative spectra of absorption which has been applied for simultaneous spectrophotometric determination of sulfamethoxazole and sulfanilamide in their mixture in the ultraviolet region. The method offers an advantage of getting rid of the resulting error in the values of absorption because of the presence of each drug with the presence of interferences from the excipients. It was found that the method is able to accurately estimate sulfamethoxazole in the range of (2.0-50.0) μg.mL-1; in mixtures containing III (2.0-30.0) μg.mL-1 of sulfanilamide, as (interferent). The results obtained, with the first derivative measurements, indicate that when the concentration of sulfanilamide is kept constant and the concentration of sulfamethoxazole varied, the peak amplitudes are measured at peak-to-baseline (223, 254,287 nm), peak to peak height between (223- 254 nm), (254-287nm). Moreover, the height at the zero cross of sulfanilamide at (235.62, 258.72 nm), heightto-height of the two zero crosses between (235.62-258.72 nm) and area under peak between (241.95-267.04 nm), (267.04-330 nm) were found to be in proportion to the sulfamethoxazole concentration therefore they are used for the determination of it. The careful inspection of the second derivative spectra obtained for the mentioned mixtures of sulfamethoxazole and sulfanilamide shows that peak to basline is at (239.5, 263.5, 267.75, 301, 215 nm) , height to basline is at zero cross is at (245.86, 271.28 nm) , peak to peak is between (239.5-264.25 nm), (239.5-267.75 nm), (271.28-301 nm), (215-239.5 nm), height to height is at two zero cross (245.86-271.28 nm) in addition to peak area at the interval between (254.12-281 nm), (286.95- 329.5 nm), (221.75-254.12 nm) measurements at specified wavelength could be used to quantify the exact concentration of sulfamethoxazole in presence of sulfanilamide. Sulfanilamide was determined for the range of (2.0-50.0) μg.mL-1; in a mixture containing (2.0-50.0) μg.mL-1 of sulfamethoxazole as (interferent). The procedure gave good results over the studied range of concentration depending on peak-to-baseline at (224, 246, 271 nm), height at zero cross at (241.95, 267.04 nm), peak to peak between (224-246 nm), (246-271 nm), height to height at two zero cross (241.95-271 nm) and area under the peak at (235.62-258.72 nm) measurements were found to be used for the determination of sulfanilamide in the first derivative technique. On other situation, the wavelengths are at 218 nm, 231 nm, 260 nm and 278 nm (peak to base line measurements), and height at two zero cross at 254 nm and 281 nm, and peak to peak measurements between (218-231 nm), (231-260 nm) and (260-278 nm), and height at zero cross at (254, 281 nm), wavelengths at (210-224 nm) , (224-245.84 nm) and (271.28-330 nm) peak area at the interval measurements were used for the estimation of sulfanilamide on second derivative.
The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show MoreResearch covers the uses the method of Quality Rating Evaluation to evaluate the
quality of production through which a determination of product quality of its production in
order to determine the amount of sales hence the profits for the company. The most important
function is to satisfy consumer at reasonable prices. Methods were applied to the product
(toothpaste) in the General Company for Vegetable Oil – Almaamoon Factory .
The company's has obtained ISO-certified (ISO 9001-2008). Random samples of
final product intended for sale were collected from the store during months (February, April ,
June , October and December) for the year 2011 to determine the "quality rating " through
the applicat
In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
The oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase. The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out unde
... Show MoreABSTRACT
Impkact of Knowledge sharing on organizational innovation Impriscal study in Arabic company .
of Knowledge Management is the main component Knowledge sharing system, it mean the exchange if Knowledge, ideas, and good practice with another individual . Knowledge sharing between persons, then its values can growth .
It is vry important because it can provide us with the contention between virus peoples . the interaction among the people can pass all kind of Knowledge among them. the connection and interaction and interaction enabl
... Show MoreA theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.
SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1
... Show MoreThis research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the m
... Show More