Four different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazotization reaction followed by coupling with diphenylamine in acidic medium to form, a blue colored azo dye compound which exhibits maximum absorption (λmax) at 530 nm for sulfamethoxazole complex and 531 nm for sulfanilamide complex against the reagent blank and the concentration of these drugs were determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method has been applied in optimization of the variables affecting the color producing reaction. The results show better optical characteristics for calibration curves and statistical data were obtained under optimum conditions obtained by multi simplex optimization, in comparison with those obtained via univariate method for two studied drugs. Beer’s law obeyed in the concentration range of 0.5-12.0 μg.mL-1, 0.5-7.0 μg.mL-1 for sulfamethoxazole and sulfanilamide respectively with molar absorptivity of 4.9617×104 L.mol-1.cm-1 for sulfamethoxazole and 5.9185×104 L.mol-1.cm-1 for sulfanilamide. The detection limits were 0.036 μg.mL-1 and 0.016 µg.mL-1 for the two complexes respectively by simplex method. No interferences from the studied excipients on the determination of these drugs were found therefore, the proposed methods were applied successfully II for the determination of the sulfamethoxazole and sulfanilamide in pharmaceutical compound and in synthetic samples. Chapter Three: Is based on the formation of condensation complexes of each drug with sodium 1,2-naphthoquinon-4-sulfonate as a chromogenic reagent. The absorbance values, for the formed complexes were measured at 460 nm for sulfamethoxazole and 455 nm for sulfanilamide; against reagent blank. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and design of experiment (DOE) method and the results were obtained under optimum conditions by (DOE) optimization which shows better optical characteristics for calibration curves and statistical data in comparison with those obtained via univariate method for two studied drugs. The calibration graphs are linear in the ranges of (5.0-50.0) µg.mL-1 for sulfamethoxazole and (5.0-30.0) µg.mL-1 for sulfanilamide with detection limit 0.359 µg.mL-1for sulfamethoxazole complex and 0.536 µg.mL-1 for sulfanilamide complex. The molar absorptivity was found to be (7.0918×104 L.mol-1.cm-1) for sulfamethoxazole and (7.0774×104 L.mol-1.cm-1) for sulfanilamide by the design of experiment (DOE) method. Finally no interferences from the studied excipients on the determination of these drugs were found. The proposed methods have been successfully applied for the determination of sulfamethoxazole and sulfanilamide in their pharmaceutical preparation and synthetic samples. Chapter Four: Includes two parts; Derivative spectrophotometry and partial least-squares (PLS). Derivative spectrophotometry is based on the first and second derivative spectra of absorption which has been applied for simultaneous spectrophotometric determination of sulfamethoxazole and sulfanilamide in their mixture in the ultraviolet region. The method offers an advantage of getting rid of the resulting error in the values of absorption because of the presence of each drug with the presence of interferences from the excipients. It was found that the method is able to accurately estimate sulfamethoxazole in the range of (2.0-50.0) μg.mL-1; in mixtures containing III (2.0-30.0) μg.mL-1 of sulfanilamide, as (interferent). The results obtained, with the first derivative measurements, indicate that when the concentration of sulfanilamide is kept constant and the concentration of sulfamethoxazole varied, the peak amplitudes are measured at peak-to-baseline (223, 254,287 nm), peak to peak height between (223- 254 nm), (254-287nm). Moreover, the height at the zero cross of sulfanilamide at (235.62, 258.72 nm), heightto-height of the two zero crosses between (235.62-258.72 nm) and area under peak between (241.95-267.04 nm), (267.04-330 nm) were found to be in proportion to the sulfamethoxazole concentration therefore they are used for the determination of it. The careful inspection of the second derivative spectra obtained for the mentioned mixtures of sulfamethoxazole and sulfanilamide shows that peak to basline is at (239.5, 263.5, 267.75, 301, 215 nm) , height to basline is at zero cross is at (245.86, 271.28 nm) , peak to peak is between (239.5-264.25 nm), (239.5-267.75 nm), (271.28-301 nm), (215-239.5 nm), height to height is at two zero cross (245.86-271.28 nm) in addition to peak area at the interval between (254.12-281 nm), (286.95- 329.5 nm), (221.75-254.12 nm) measurements at specified wavelength could be used to quantify the exact concentration of sulfamethoxazole in presence of sulfanilamide. Sulfanilamide was determined for the range of (2.0-50.0) μg.mL-1; in a mixture containing (2.0-50.0) μg.mL-1 of sulfamethoxazole as (interferent). The procedure gave good results over the studied range of concentration depending on peak-to-baseline at (224, 246, 271 nm), height at zero cross at (241.95, 267.04 nm), peak to peak between (224-246 nm), (246-271 nm), height to height at two zero cross (241.95-271 nm) and area under the peak at (235.62-258.72 nm) measurements were found to be used for the determination of sulfanilamide in the first derivative technique. On other situation, the wavelengths are at 218 nm, 231 nm, 260 nm and 278 nm (peak to base line measurements), and height at two zero cross at 254 nm and 281 nm, and peak to peak measurements between (218-231 nm), (231-260 nm) and (260-278 nm), and height at zero cross at (254, 281 nm), wavelengths at (210-224 nm) , (224-245.84 nm) and (271.28-330 nm) peak area at the interval measurements were used for the estimation of sulfanilamide on second derivative.
Gender and culture are among the factors that influence the process of understanding and interpreting different types of communication, especially images. The current study, which is a part of a master’s thesis, aims at investigating the role of gender and culture in interpreting and understanding the caricatures that deal with women’s issues in Arab societies. To this end, the researchers adopted Barthes’ (1957) concepts of denotation and connotation in his theory of mythologies in addition to Langacker’s (1987) theory of (Domains). The research concludes that the female subjects have better cognitive abilities in investing the signs within the selected caricatures. The other factor the study reached to is that the respondents
... Show MoreThe ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d
... Show MoreA geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show MoreThis paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology
Background: A Temporomandibular joint (TMJ) internal derangement (TMJID) is a disruption within the internal aspects of the TMJ in which the disc is displaced from its normal functional relationship with the mandibular condyle, after which the articular portion of the temporal bone causes joint dysfunction, joint sound, malocclusion, and locking of the mouth. Conservative and invasive techniques can be used for the treatment of TMJID. A platelet-rich plasma (PRP) injection is a simple, less invasive surgical procedure for the treatment of internal derangement. The objective of this study was to evaluate the efficacy of PRP injections in decreasing or eliminating pain, clicking, and limitation of mouth opening in patients with TMJID after th
... Show MoreThe aim of the work is synthesis and characterization of new bidentate chalcone ligand type (NO):[(E)-1-(3-aminophenyl)-3-(4-chlorophenyl) prop-2-en-1-one] [H2L], from the reaction of 3-amino acetophenone with 4-chloro benzaldehyde to produce the ligand [H2L], the reaction was carried out in ethanol as a solvent under stirring. The prepared ligand [H2L] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The complexes of ligand [H2L] were prepared with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni and Cu) at reflux ,using ethanol as a solvent and KOH as a base with molecular formula [M (H2L)2] +2 where: H2L= (C15H12NOCl). All the complexes were characterized by spectroscopic met
... Show MoreA simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show Moreالوصف A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5, 6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro (carboxylic) methylidene]-5, 6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl (6-methyl-2-pyridylmethyl) amine to create a new ligand (ONMILA). This novel ligand was identified using
... Show More