Four different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazotization reaction followed by coupling with diphenylamine in acidic medium to form, a blue colored azo dye compound which exhibits maximum absorption (λmax) at 530 nm for sulfamethoxazole complex and 531 nm for sulfanilamide complex against the reagent blank and the concentration of these drugs were determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method has been applied in optimization of the variables affecting the color producing reaction. The results show better optical characteristics for calibration curves and statistical data were obtained under optimum conditions obtained by multi simplex optimization, in comparison with those obtained via univariate method for two studied drugs. Beer’s law obeyed in the concentration range of 0.5-12.0 μg.mL-1, 0.5-7.0 μg.mL-1 for sulfamethoxazole and sulfanilamide respectively with molar absorptivity of 4.9617×104 L.mol-1.cm-1 for sulfamethoxazole and 5.9185×104 L.mol-1.cm-1 for sulfanilamide. The detection limits were 0.036 μg.mL-1 and 0.016 µg.mL-1 for the two complexes respectively by simplex method. No interferences from the studied excipients on the determination of these drugs were found therefore, the proposed methods were applied successfully II for the determination of the sulfamethoxazole and sulfanilamide in pharmaceutical compound and in synthetic samples. Chapter Three: Is based on the formation of condensation complexes of each drug with sodium 1,2-naphthoquinon-4-sulfonate as a chromogenic reagent. The absorbance values, for the formed complexes were measured at 460 nm for sulfamethoxazole and 455 nm for sulfanilamide; against reagent blank. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and design of experiment (DOE) method and the results were obtained under optimum conditions by (DOE) optimization which shows better optical characteristics for calibration curves and statistical data in comparison with those obtained via univariate method for two studied drugs. The calibration graphs are linear in the ranges of (5.0-50.0) µg.mL-1 for sulfamethoxazole and (5.0-30.0) µg.mL-1 for sulfanilamide with detection limit 0.359 µg.mL-1for sulfamethoxazole complex and 0.536 µg.mL-1 for sulfanilamide complex. The molar absorptivity was found to be (7.0918×104 L.mol-1.cm-1) for sulfamethoxazole and (7.0774×104 L.mol-1.cm-1) for sulfanilamide by the design of experiment (DOE) method. Finally no interferences from the studied excipients on the determination of these drugs were found. The proposed methods have been successfully applied for the determination of sulfamethoxazole and sulfanilamide in their pharmaceutical preparation and synthetic samples. Chapter Four: Includes two parts; Derivative spectrophotometry and partial least-squares (PLS). Derivative spectrophotometry is based on the first and second derivative spectra of absorption which has been applied for simultaneous spectrophotometric determination of sulfamethoxazole and sulfanilamide in their mixture in the ultraviolet region. The method offers an advantage of getting rid of the resulting error in the values of absorption because of the presence of each drug with the presence of interferences from the excipients. It was found that the method is able to accurately estimate sulfamethoxazole in the range of (2.0-50.0) μg.mL-1; in mixtures containing III (2.0-30.0) μg.mL-1 of sulfanilamide, as (interferent). The results obtained, with the first derivative measurements, indicate that when the concentration of sulfanilamide is kept constant and the concentration of sulfamethoxazole varied, the peak amplitudes are measured at peak-to-baseline (223, 254,287 nm), peak to peak height between (223- 254 nm), (254-287nm). Moreover, the height at the zero cross of sulfanilamide at (235.62, 258.72 nm), heightto-height of the two zero crosses between (235.62-258.72 nm) and area under peak between (241.95-267.04 nm), (267.04-330 nm) were found to be in proportion to the sulfamethoxazole concentration therefore they are used for the determination of it. The careful inspection of the second derivative spectra obtained for the mentioned mixtures of sulfamethoxazole and sulfanilamide shows that peak to basline is at (239.5, 263.5, 267.75, 301, 215 nm) , height to basline is at zero cross is at (245.86, 271.28 nm) , peak to peak is between (239.5-264.25 nm), (239.5-267.75 nm), (271.28-301 nm), (215-239.5 nm), height to height is at two zero cross (245.86-271.28 nm) in addition to peak area at the interval between (254.12-281 nm), (286.95- 329.5 nm), (221.75-254.12 nm) measurements at specified wavelength could be used to quantify the exact concentration of sulfamethoxazole in presence of sulfanilamide. Sulfanilamide was determined for the range of (2.0-50.0) μg.mL-1; in a mixture containing (2.0-50.0) μg.mL-1 of sulfamethoxazole as (interferent). The procedure gave good results over the studied range of concentration depending on peak-to-baseline at (224, 246, 271 nm), height at zero cross at (241.95, 267.04 nm), peak to peak between (224-246 nm), (246-271 nm), height to height at two zero cross (241.95-271 nm) and area under the peak at (235.62-258.72 nm) measurements were found to be used for the determination of sulfanilamide in the first derivative technique. On other situation, the wavelengths are at 218 nm, 231 nm, 260 nm and 278 nm (peak to base line measurements), and height at two zero cross at 254 nm and 281 nm, and peak to peak measurements between (218-231 nm), (231-260 nm) and (260-278 nm), and height at zero cross at (254, 281 nm), wavelengths at (210-224 nm) , (224-245.84 nm) and (271.28-330 nm) peak area at the interval measurements were used for the estimation of sulfanilamide on second derivative.
Wireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show MoreA batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
In the beta decay process, a neutron converts into a proton, or vice versa, so the atom in this process changes to a more stable isobar. Bethe-Weizsäcker used a quasi-experimental formula in the present study to find the most stable isobar for isobaric groups of mass nuclides (A=165-175). In a group of isobars, there are two methods of calculating the most stable isobar. The most stable isobar represents the lowest parabola value by calculating the binding energy value (B.E) for each nuclide in this family, and then drawing these binding energy values as a function of the atomic number (Z) in order to obtain the mass parabolas, the second method is by calculating the atomic number value of the most stable isobar (ZA). The results show
... Show MoreThis paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec
... Show MoreThe high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:
Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alk)
The developed model will aid the predictiv
... Show MoreA series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show MoreIn this research, Zinc oxide (ZnO)/epoxy nanocomposite was synthesized by simple casting method with 2wt. % ZnO concentration. The aim of this work was to study the effect of pH and composite dosage on the photocatalytic activity of ZnO/ epoxy nanocomposite. Scanning electron microscopy (SEM) technique images proof the homogeneous distribution of ZnO nanoparticles in epoxy. A synthesized nanocomposite samples were characterized by Fourier Transform Infrared spectrometer (FTIR) measurements. Two spectra for epoxy and 2wt.% ZnO/epoxy nanocomposites were similar and there are no new bonds formed from the incorporation of ZnO nanoparticles. Using HCl and NaOH were added to Methylene blue (MB) dye (5ppm) to gat pH values 3 and 8. The degradat
... Show More