Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assumptions involved in these models have limited their applications to very specific scenarios. In this study, an analytical solution for determination of the volume of collapse during drilling is presented based on changes in the geometry of boreholes. The approach can be used in conjunction with different failure criteria to estimate the collapse onset in the presence of formation strengths and principal stresses. The study highlighted how the integration of information from different sources and disciplines were able to estimate the shear failure induced on the borehole wall during drilling.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreMany purposes require communicating audio files between the users using different applications of social media. The security level of these applications is limited; at the same time many audio files are secured and must be accessed by authorized persons only, while, most present works attempt to hide single audio file in certain cover media. In this paper, a new approach of hiding three audio signals with unequal sizes in single color digital image has been proposed using the frequencies transform of this image. In the proposed approach, the Fast Fourier Transform was adopted where each audio signal is embedded in specific region with high frequencies in the frequency spectrum of the cover image to sa
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe "Nudge" Theory is considered one of the most recent theories, which is clear in the economic, health, and educational sectors, due to the intensity of studies on it and its applications, but it has not yet been included in crime prevention studies. The use of Nudge theory appears to enrich the theory in the field of crime prevention, and to provide modern, effective, and implementable mechanisms.
The study deals with the "integrative review" approach, which is a distinctive form of research that generates new knowledge on a topic through reviewing, criticizing, and synthesizing representative literature on the topic in an integrated manner so that new frameworks and perspectives are created around it.
The study is bas
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreWe present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
The city of Samawah is one of the most important cities which emerged in the poverty area within the poverty map produced by the Ministry of Planning, despite being an important provincial centre. Although it has great development potentials, it was neglected for more than 50 years,. This dereliction has caused a series of negative accumulations at the urban levels (environmental, social and economic). Therefore, the basic idea of this research is to detect part of these challenges that are preventing growth and development of the city. The methodology of the research is to extrapolate the reality with the analysis of the results, data and environmental impact assessment of the projec