Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The optimum value of the threshold current density is 2670 A/cm2 was obtained when the well width (w= 2.5 nm), reflectivity of cavity mirrors (R1=0.75, R2=0.9), cavity length (L=2mm), average thickness of active region (d= 11.5 nm), and optical confinement factor ( Γ= 0.034) at room temperature.
Four photosensitizers were used to test inhibitory effect of Helicobacter pylori bacteria using
low power helium: neon red laser radiation. Biopsies were collected from 176 patients and H. pylori were
isolated, identified and bacterial suspension was prepared. Samples of this suspension were mixed with
various low concentrations of the test sensitizer. The mixture samples were exposed to different laser
radiation doses. The samples were then inoculated and the inhibition zones were studied and compared
with their analogues of control samples. The most effective sensitizer with optimum concentration and
irradiation dose was determined. Statistical analysis of results was performed. The sensitizers' toluidine
blue and
The relation between the output power and wavelengths for a 532nm 3W frequency doubled diode pumped solid state laser pumped Ti:Sapphire crystal is investigated. A 20 femtosecond pulse at 800 nm is obtained. A 320 mW is found to be the highest power at 800nm. Below this wavelength value and above the power was found to deviate from highest output value.
This paper reports on the laser emission properties of the BBQ dye in poly (methyl meth-acrylate)(PMMA). This host material combines the advantages of an organic environment for dye with the thermoptical mechanical properties of an organic dye. A BBQ dye solid solution in PMMA polymer. A nitrogen laser in untuned laser cavity has pumped thin films. We developed the concentration and the thickness to get high efficiency. The laser efficiency had been increased from 7% at thickness 1.5 m to 16.5% at thickness 3.5m, and from 1% to 10% when concentration increased from 1x10-5M to 1x10-3 M
Abstract: Under high-excitation irradiance conditions to induce fluorescence, the dependence of photobleaching of Coumarin 307 (C307) and acriflavine (ACF) laser dyes in liquid and solid phases have been studied. A cw LD laser source of 1 mW and 407 nm wavelength was used as an exciting source. For one hour exposure time, it was found that the solid dye samples suffer photobleaching more than the liquid dye samples. This is because in liquid solutions the dye molecules can circulate during the irradiation, while the photobleaching is a serious problem when the dye is incorporated into solid matrix and cannot circulate.
In this research, the size strain plot method was used to estimate the particle size and lattice strain of CaTiO3 nanoparticles. The SSP method was developed to calculate new variables, namely stress, and strain energy, and the results were crystallite size (44.7181794 nm) lattice strain (0.001211), This method has been modified to calculate new variables such as stress and its value (184.3046308X10-3Mpa) and strain energy and its value (1.115833287X10-6 KJm-3).
Experimental densities, viscosities η, and refractive indices nD data of the ternary ethanol+ n-hexane + 3-methyl pentane system have been determined at temperatures 293.15,303.15 and 313.15 K and at atmospheric pressure then these properties were calculated theoretically by using mixing rules for densities, viscosities and refractive indices .After that the theoretical data and the experimental data were compared due to the high relative errors in viscosities an equation of viscosity was proposed to decrease the relative errors.
The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
In the present work, different thicknesses of CdS film were prepared by chemical bath deposition. Z-Scan technique was used to study the nonlinear refractive index and nonlinear absorption coefficients. Linear optical testing were done such as transmission test, and thickness of films were done by the interference fringes (Michelson interferometer). Z-scan experiment was performed at 650nm using CW diode laser and at 532nm wavelength. The results show the effect of self-focusing and defocusing that corresponds with nonlinear refraction n2. The effect of two-photon absorption was also studied, which correspond to the nonlinear absorption coefficient B.
Background: Low-level laser therapy (LLLT) has been extensively applied to improve wound healing due to some biostimulatory properties presented by laser arrays apparently able to accelerate the repair of soft tissue injuries. However, the role of proinflammatory interlukines not been studied yet. IL_1 ? represent one of the most important poroinflammatory interlukines that involved in wound healing. The goal of this study was to investigate the effect of 790-805nm diode laser on the expression of IL_1 ? during wound healing in mice. Materials and Methods: Standard-sized wounds (1.5cm) were carried out in the face of 96 white albino mice. Half of them underwent LLLT treatment (360 J/cm 2) at 790-805 nm delivered immediately after wound pro
... Show More