Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were throughput, end-to-end delay, and packet loss ratio. They compared their performance to learn in which traffic flow/service each of these protocols functions better than the others. The throughput of SCTP and TFRC is better than UDP. DCCP is superior to SCTP and TFRC in terms of end-to-end delay. SCTP is suitable for Internet applications that require high bandwidth.
Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin
... Show MoreDue to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show MoreIn this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes
... Show MoreAs smartphones incorporate location data, there is a growing concern about location privacy as smartphone technologies advance. Using a remote server, the mobile applications are able to capture the current location coordinates at any time and store them. The client awards authorization to an outsider. The outsider can gain admittance to area information on the worker by JSON Web Token (JWT). Protection is giving cover to clients, access control, and secure information stockpiling. Encryption guarantees the security of the location area on the remote server using the Rivest Shamir Adleman (RSA) algorithm. This paper introduced two utilizations of cell phones (tokens, and location). The principal application can give area inf
... Show MoreWith the spread of global markets for modern technical education and the diversity of programs for the requirements of the local and global market for information and communication technology, the universities began to race among themselves to earn their academic reputation. In addition, they want to enhance their technological development by developing IMT systems with integrated technology as the security and fastest response with the speed of providing the required service and sure information and linking it The network and using social networking programs with wireless networks which in turn is a driver of the emerging economies of technical education. All of these facilities opened the way to expand the number of students and s
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreGetting knowledge from raw data has delivered beneficial information in several domains. The prevalent utilizing of social media produced extraordinary quantities of social information. Simply, social media delivers an available podium for employers for sharing information. Data Mining has ability to present applicable designs that can be useful for employers, commercial, and customers. Data of social media are strident, massive, formless, and dynamic in the natural case, so modern encounters grow. Investigation methods of data mining utilized via social networks is the purpose of the study, accepting investigation plans on the basis of criteria, and by selecting a number of papers to serve as the foundation for this arti
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.