Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from conventional normal weight concrete core, while the other specimens were constructed with modified core materials by either partial replacement of the coarse aggregate with crumb rubber (CR), the addition of oil palm fibre (OPF) to the concrete as a volume fraction of concrete, or both in the concrete cores. The investigated push-out specimens have a height of 450 mm and constructed from two hollow steel tubes with a square cross section of 100 mm and 5 mm in thickness which fixed to concrete prism using bolt end shear connectors. The detection of the mode of failure, load–slip as well as ductility behaviour, and the energy absorption capacity was investigated. The results revealed an improvement in the energy absorption (EA) capacity averagely by 55% for the specimen with 15% CR and 1.1% addition of OPF as a volume fraction of concrete in comparison with the reference specimens due to the high shear resistance.
Landfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreIraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to
... Show MoreReliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con
... Show MoreThis research is carried out to investigate the behavior of self-compacting concrete (SCC) two-way slabs with central square opening under uniformly distributed loads. The experimental part of this research is based on casting and testing six SCC simply supported square slabs having the same dimentions and reinforcement. One of these slabs was cast without opening as a control slab. While, the other five slabs having opening ratios (OR) of 2.78%, 6.25%, 11.11%, 17.36% and 25.00%. From the experimental results it is found that the maximum percentage decrease in cracking and ultimate uniform loads were 31.82% and 12.17% compared to control slab for opening ratios (OR
... Show MoreThis study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that
... Show More