Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from conventional normal weight concrete core, while the other specimens were constructed with modified core materials by either partial replacement of the coarse aggregate with crumb rubber (CR), the addition of oil palm fibre (OPF) to the concrete as a volume fraction of concrete, or both in the concrete cores. The investigated push-out specimens have a height of 450 mm and constructed from two hollow steel tubes with a square cross section of 100 mm and 5 mm in thickness which fixed to concrete prism using bolt end shear connectors. The detection of the mode of failure, load–slip as well as ductility behaviour, and the energy absorption capacity was investigated. The results revealed an improvement in the energy absorption (EA) capacity averagely by 55% for the specimen with 15% CR and 1.1% addition of OPF as a volume fraction of concrete in comparison with the reference specimens due to the high shear resistance.
This study deals with the corrosion inhibition of metal corrosion process of medium carbon steel using 1M HCl for kinetic studies and rate reaction determination. The weight loss method is applied to pieces of Medium carbon steel divided to Cubans with dimensions (0.4*2*2.4) cm , and use Tafel Extrapolation Method, the samples were polished using carbide silicon paper with dimensions of (180,200,400,600,800,1000). The samples were immersed in the alcoholic medium ethanol at a temperature 293K for 3hr. Natural inhibitor Kujarat Tea (Hibiscus sabdarriffa L.) is used which is extracted in aqueous and alcoholic medium, different concentrations (1000،2000, 3000) ppm have been used ; The best concentration found through the results is a conce
... Show MoreThis study deals with the corrosion inhibition of metal corrosion process of medium carbon steel using 1M HCl for kinetic studies and rate reaction determination. The weight loss method is applied to pieces of Medium carbon steel divided to Cubans with dimensions (0.4*2*2.4) cm , and use Tafel Extrapolation Method, the samples were polished using carbide silicon paper with dimensions of (180,200,400,600,800,1000). The samples were immersed in the alcoholic medium ethanol at a temperature 293K for 3hr. Natural inhibitor Kujarat Tea (Hibiscus sabdarriffa L.) is used which is extracted in aqueous and alcoholic medium, different concentrations (1000،2000, 3000) ppm have been used ; The best concentration found through the results is a
... Show MoreThe effect of time (or corrosion products formation) on corrosion rates of carbon steel pipe in aerated 0.1N NaCl
solution under turbulent flow conditions is investigated. Tests are conducted using electrochemical polarization
technique by determining the limiting current density of oxygen reduction in Reynolds number range of 15000 to 110000
and temperature range of 30 to 60oC. The effect of corrosion products formation on the friction factor is studied and
discussed. Corrosion process is analyzed as a mass transfer operation and the mass transfer theory is employed to
express the corrosion rate. The results are compared with many proposed models particularly those based on the
concept of analogy among momentum, heat,
In this study we focused on the determination of influence the novel synthesized thiosemicarbazide derivative "2-(2-hydroxy-3-methoxybenzylidene) hydrazinecarbothioamide" (HMHC) influenced the corrosion inhibition of mild steel (MS) in a 1.0 M hydrochloric acid acidic solution.This is in an effort to preserve the metal material by maintaining it from corrosion.The synthesized inhibitor was characterized using elemental analysis, and NMR-spectroscopy. Then the corrosion inhibition capability of (HMHC) was studied on mild steel in an acidic medium by weight loss technique within variables [temperature, inhibitor concentration, and time]. The immersion periods were [1:00, 3:00, 5:00, 10:00, 24:00, and 72:00] hours and the tem
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
The aim of this work is to study the influence of the type of fiber glass –mat on fatigue behavior of composite material which is manufactured from polyester and E-glass (woven roving, chopped strand mat (CSM)) as a laminate with a constant fiber volume fraction (VF) of 33%. The results showed that the laminates reinforced with E-glass (woven roving) [0/90, ±45.0/90] and [0/90, CSM, 0/90] have lower fatigue strength than the laminates reinforced with E-glass [0/90]3,[CSM]3 and [CSM, 0/90, CSM] although they had different tensile strength; the best laminate was [0/90]3 .
The production of fission products during reactor operation has a very important effect on reactor reactivity .Results of neutron cross section evaluations are presented for the main product nuclides considered as being the most important for reactor calculation and burn-up consideration . Data from the main international libraries considered as containing the most up-to-date nuclear data and the latest experimental measurements are considered in the evaluation processes, we describe the evaluated cross sections of the fission product nuclides by making inter comparison of the data and point out the discrepancies among libraries.
Background: evaluate the effects of three different intracoronal bleaching agents on the shear bond strengths (SBS) and failure site of stainless steel and monocrystalline (sapphire) orthodontic brackets bonded to endodontically treated teeth using light cured orthodontic adhesive in vitro. Materials and methods: Eighty extracted sound human upper first premolars were selected, endondontically treated and randomly divided equally (according to the type of the brackets used) into two main groups (n = 40 per group). Each main group were subdivided (according to the bleaching agent used) into four subgroups 10 teeth each; as following : control (un bleached) group, hydrogen peroxide group (Hp) 35%, carbamide peroxide group (CP) 37% group and s
... Show MoreBackground: This in vitro study evaluated the fracture resistance of weakened endodontically treated premolars with class II MOD cavities restored with different composite restorations (Low-shrinkage Filtek P90, nanohybrid Filtek Z250 XT and SDR bulk fill). The type and mode of fracture were also assessed for all the experimental groups. Materials and Method: Fifty human adult maxillary premolar teeth were selected for this study. Standardized extensive class II MOD cavities with endodontic treatment were prepared for all teeth, except those that were saved as intact control. The teeth were divided into five groups of ten teeth each (n=10): (Group 1) intact control group, (Group 2) unrestored teeth with endodontic treatment, (Group 3) resto
... Show More