Preferred Language
Articles
/
tBYDoogBVTCNdQwCpnnI
Prediction of Placenta Accreta Using Hyperglycosylated Human Chorionic Gonadotropin
...Show More Authors

Objectives: Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG. In addition, it has a different oligosaccharide structure compared to the regular hCG and promotes the invasion and differentiation of peripheral cytotrophoblast. This study aimed to measure hyperglycosylated hCG as a predictor in the diagnosis of placenta accreta. Materials and Methods: In general, 90 pregnant women were involved in this case-control study among which, 30 ladies (control group) were pregnant within the gestational age of ≥36 weeks with at least one previous caesarean section and a normal sited placenta in transabdominal ultrasound (TAU). The other 60 pregnant women (case group) were within a gestational age of ≥36 weeks at least, one previous caesarean section and placenta previa with or without signs of placenta accreta in TAU. Hyperglycosylated hCG and total hCG were measured in each group and the results of the surgery were followed up. Results: Hyperglycosylated hCG showed higher serum levels in patients with placenta accreta compared to those with placenta previa and control women. Hyperglycosylated hCG with an optimal cut point of (3) IU/L predicted placenta accreta in pregnant women with 90% specificity, 76.7% sensitivity, and 81.1% accuracy. Conclusions: The high specificity of the above approach makes it a good diagnostic tool (as a single test) for confirming placenta accreta in clinical settings. When this test is added to our established workup, its high positive predictive value makes it a suitable method within the algorithm of accreta confirmation when there is a high suspicion or insufficient evidence to the diagnosis of placenta accreta.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Apr 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Identification of Enterococcus faecalis Isolated from Infected Human Tooth Root Canals Human by Using Polymerase Chain Reaction
...Show More Authors

     One hundred samples of root canal bacteria were isolated  from patients teeth with primary and secondary infected root canal from all the ages . Biochemical and microscopial tests were done for identification of these isolates. Twenty four isolates were confirmed as       E. faecalis species by using these tests. Genetic diagnosis for the all isolates was also done by using polymerase chain reaction ( PCR ). Thirty two isolates were confirmed to  belong to E. faecalis species by using this test.

View Publication Preview PDF
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jul 03 2011
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Ovarian antral follicle number and the amount of gonadotropin used in ovarian stimulation in polycystic ovarian patients.
...Show More Authors

Background: Polycystic ovary syndrome is the most common cause of anovulation, and the number of antral follicles is of great importance in determining ovarian reserve, so identification of patients with diminished ovarian reserve help in choosing individualized and well managed ovulation induction protocol. The aim of the study is to find out if the number of ovarian antral follicles could affect the amount of gonadotropins used in ovarian stimulation in polycystic ovarian patients.
Patients and methods: Ninty four infertile polycystic ovaries women, attending the infertility clinic at Baghdad teaching hospital, during the period of November 2005 to October 2006, were compared to 62 control group women w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Human Pose Estimation Algorithm Using Optimized Symmetric Spatial Transformation Network
...Show More Authors

Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Thu Mar 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
International Journal Of Drug Delivery Technology
Expression of Vascular Endothelial Growth Factor in the Placenta of Iraqi Women Complicated with Hypertensive Disorder
...Show More Authors

During pregnancy, high blood pressure disorder is the most common medical complication in pregnancy. It is the foremost cause of maternal mortality and perinatal diseases. Vascular endothelial growth factor (VEGF) affects the growth of vascular endothelial cells, existence, and multiplying, which are known to be expressed in the human placenta. This study aimed to identify the expression VEGF in the placenta of hypertension and normotensive women. In this study, a cross-sectional study from november 2019 to February 2020. A total of 100 placentae involved 50 hypertensive cases and 50 normotensive groups were assessed. VEGF-A expression in two placentas groups was evaluated by immunohistochemistry techniques. Strong and moderate VEGF

... Show More
View Publication
Scopus (1)
Scopus Crossref