Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partially replaced by ground granulated blast furnace slag (GGBFS) with various amounts to make the concrete eco-friendly. The concrete was reinforced with several quantities of PP fiber. Specific cases of beams and cylinders made from PFRC were examined to learn more about their performance. The research contributes valuable insights to eco-friendly concrete design by integrating industrial byproducts (GGBFS) and non-metallic fibers, aligning with sustainable construction trends. The study demonstrates that adding sustainable fibers to concrete improves its structural integrity while lessening its environmental impact. Experimental testing validates the proposed model, showing a significant connection between the expected and actual stress-strain behavior. In terms of absolute relative error (ARE), the dataset proves that the suggested model has both the greatest (ARE 5 %) and worst (ARE > 15 %) frequencies. The proposed model demonstrates promising accuracy (R-value = 0.9975) and highlights the effectiveness of PSO in parameter optimization. Additionally, the usage of GGBFS instead of OPC resulted in CO2 reduction up to 42 %. Comparative analysis of the proposed model against existing models registered an excellent forecasted accuracy.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MoreOverlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
Biomedical signal such as ECG is extremely important in the diagnosis of patients and is commonly recorded with a noise. Many different kinds of noise exist in biomedical environment such as Power Line Interference Noise (PLIN). Adaptive filtering is selected to contend with these defects, the adaptive filters can adjust the filter coefficient with the given filter order. The objectives of this paper are: first an application of the Least Mean Square (LMS) algorithm, Second is an application of the Recursive Least Square (RLS) algorithm to remove the PLIN. The LMS and RLS algorithms of the adaptive filter were proposed to adapt the filter order and the filter coefficients simultaneously, the performance of existing LMS
... Show MoreAbstract
The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreIn this work polymeric composites were done from unsaturated polyester as a matrix reinforced with glass fiber type (E-glass) with two different volume fraction 20% & 40%. Fatigue tests showed that the number of fatigue cycles to failure limit for samples reinforced with uniform (woven Roving 0-90°) E-glass fiber and random (continuous fibers) with volume fraction 40% more than that for the same samples with volume fraction 20%. Also the fatigue results showed that the uniform samples failed with fatigue cycles more than that of random.
Non-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show More