Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partially replaced by ground granulated blast furnace slag (GGBFS) with various amounts to make the concrete eco-friendly. The concrete was reinforced with several quantities of PP fiber. Specific cases of beams and cylinders made from PFRC were examined to learn more about their performance. The research contributes valuable insights to eco-friendly concrete design by integrating industrial byproducts (GGBFS) and non-metallic fibers, aligning with sustainable construction trends. The study demonstrates that adding sustainable fibers to concrete improves its structural integrity while lessening its environmental impact. Experimental testing validates the proposed model, showing a significant connection between the expected and actual stress-strain behavior. In terms of absolute relative error (ARE), the dataset proves that the suggested model has both the greatest (ARE 5 %) and worst (ARE > 15 %) frequencies. The proposed model demonstrates promising accuracy (R-value = 0.9975) and highlights the effectiveness of PSO in parameter optimization. Additionally, the usage of GGBFS instead of OPC resulted in CO2 reduction up to 42 %. Comparative analysis of the proposed model against existing models registered an excellent forecasted accuracy.
For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreThere are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.
In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.
The comparison proof that this simple proposed method gives good results and it can be used in analy
... Show MoreThe slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz
... Show MoreUsing fiber-reinforced polymer (FRP) could effectively improve the strength and endurance of reinforced concrete (RC) constructions. This study evaluated the flexural behavior of one-way concrete slabs with openings reinforced with glass fiber-reinforced polymers (GFRP) bars. It strengthened using carbon fiber-reinforced polymer (CFRP) sheets around the openings. The experimental program of this study is adopted by casting and testing four one-way concrete slabs with dimensions of (150*750*2650) mm. These slabs are divided into two groups based on whether they were strengthened or un-strengthened. For each group, two different openings (either one rectangular or two square) measured 250*500 mm and 250*250 mm, respective
... Show MoreThe present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and
... Show More