<p>There is an Increasing demand for the education in the field of E-learning specially the higher education, and to keep contiuity between the user and the course director in any place and time. This research presents a proposed and simulation multimedia network design for distance learning utilizing ATM technique. The propsed framework determines the principle of ATM technology and shows how multimedia can be integrated within E- learning conteext. The first part of this research presents a theoretical design for the Electricity Department, university of technology. The purpose is to illustrate the usage of the ATM and Multimedia in distance learning process. In addition, this research composes two entities: Software entity by using image, sound and a mix between them to be transfered across the ATM network.. The MATLAB was used to validate the implementation of the required design objectives: (hardware entity) where a prototype is designed (experimental trial) , which aims to carry out the connectivity process between the user and course director, where multiple PCs are connected via unshielded twisted pair (UTP) and a web camera with microphone have been attached to PCs. To finalize this stage, an interface is implemented to show the data transmission process for multimedia by the ATM network and it has been realized through the Visual Basic language. Finally, to validate the level of success by using the ATM technique, some important factors have been determined through the analysis phase, which are: time delay, throughput and efficiency. The propsed design manages to minimize the impat of noise and improve the throuput ratio by 30% while minizing the delay with a ratio of 22%.</p>
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Background: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreSubsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the e
... Show More