This research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was studied by cathode and anode polarization through which all corrosion parameters were investigated which include: corrosion current icorr (1341× 10-7-5393 × 10-9A/cm2), corrosion potential Ecorr (-1.031--0.227 mV vs SCE) , corrosion rates CR (0.658-0.007 mm.y-1), inhibition efficiency %IE (92-98%), and energy activation barriers Ea (4.709-26.733 kJ/mole). The thermodynamic and kinetic properties of the corrosion behavior of these two metals under study, which include: enthalpy ∆H*(2.153-24.176 kJ/mole), entropy ∆S*(-197 -156 J/mole), and freeGibbs energy ∆G*(59.87-74.56 kJ/mole) before and after using the inhibitor, were also studied
Background: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture. The aim of study is to evaluate the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on linear dimensional change and effect of palatal vault shapes on linear dimensional changes of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymerized high impact acrylic resin maxillary denture base were fabri
... Show MoreBackground: Polymethylmethacrylate (PMMA) has relatively unsatisfactory mechanical properties such as low flexural strength and impact strength also dimensional instability. Material and method: Zirconium silicate nanoparticles were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 1% and 1.5% by weight then mixed with powder using conventional procedure, (150) samples were prepared and divided into three groups, each group consisted of (50) samples, the first group prepared from PMMA without addition (control), another group with the addition of 1% wt Zrsio4 nanoparticles (experimental) and the third one with 1.5% wt Zrsio4 nanoparticles (experimental). Each group
... Show MoreBackground: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture.This study evaluated tostudy the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on adaptation or gap space between the denture base and the stone cast and compare with non-fiber reinforcement and effect of palatal vault shapes on adaptation of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymeri
... Show MoreBackground: Heat-cured poly (methyl methacrylate) the principal material for the fabrication of denture base have a relatively poor mechanical properties. The aim of this study was to investigate the effect of glass flakes used as reinforcement on the surface hardness and surface roughness of the heat-processed acrylic resin material. Material and method: Glass flakes (product code: GF002) pretreated with silane coupling agent were added to Triplex® denture base powder using different concentrations. A total of 100 specimens of similar dimensions (65 x 10 x 2.5) mm were prepared, subdivided into 2 main groups of 50 specimens for each of the study tests. Ten specimens for the control group and 40 specimens for each of the experimental gro
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreThe first flow injection spectrophotometric method is characterized by its speed and sensitivity which have been developed for the determination of promethazine-HCl in pure and pharmaceutical preparation. It is based on the in situ detection of colored cationic radicals formed via oxidation of the drug with sodium persulphate to pinkish-red species and the same species was determined by using homemade Ayah 3SX3-3D solar flow injection photometer. Optimum conditions were obtained by using the high intensive green light emitted diode as a source. Linear dynamic range for the absorbance versus promethazine-HCl concentration was 0-7 mmol.L-1, with the correlation coefficient (r) was 0.9904 while the percentage linearity (r2%) was 98.09%. the L.
... Show MoreThis research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate
... Show More