The search involve the synthesis of some new 1,3-oxazepine and 1,3-diazepine derivatives were synthesized from Schiff base. The Schiff base (VIII) prepared from reaction of aldehyde (IV) derived from L-ascorbic acid with aromatic amine ([2-(4- nitrophenyl)-5-(4-aminophenyl)-1,3,4-oxadiazole] (VII). Oxazepine compounds (IX-XI) were synthesized from the cyclic condensation of Schiff base (VIII) with (maleic, phthalic and 3-nitrophthalic) anhydride, compounds (IX-XI) that were reacted with p-methoxyaniline to give diazepine derivatives (XII-XIV). The structures of the new synthesized compounds have been confirmed by physical properties and spectroscopy measurements such as FTIR, and some of them by 1 H-NMR, 13 CNMR, Mass, and evaluated their antibacterial activity as (Escherichia Coli (G-), Staphylococcus aureus (G+)).
Some new heterocyclic compounds containing, cyclohexenone, indazole, isoxazoline, pyrmidine and pyrazoline ring system were prepared from chalcones (1a,b). The starting chalcones (1a,b) were obtained by a base catalyzed condensation of appropriately substituted benzaldehydes and 2-acetylbenzofuran. The reaction of the prepared chalcones with ethylacetoacetate/hydrazine hydrate, hydroxylamine hydrochloride, urea, thiourea, hydrazine hydrate, phenyl hydrazine or hydrazide derivatives gave the mentioned heterocycles. All synthesized compounds have been characterized by physical and spectral methods.
Anatomical changes in internal tissue of stem and leaf when seed and plant treated with acids to enhance growth and development in maize was studied during the spring seasons of 2019 and 2020. Randomized complete block design was used with three replications. Main plots received foliar nutrition treatments, including ascorbic acid (AA), citric acid (CA), and humic acid (HA) at concentrations of 100 mg L−1, alongside HA at 1 ml L−1, with distilled water as the control. Sub-plots underwent corresponding treatments for seed soaking. Results indicated variations in vascular bundle size among treatments, with foliar CA treatment showing superior results in both years, as well as seed soaking in CA and HA. Interaction effects were observed, n
... Show MoreIn this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.
A new Schiffbase derivative ligands [H4L1] and [H2L2] have been produced by condensed ophathaldehyde with ethylene diamine and [N1, N1'E, N1, N1'E)-N1, N1'-(1, 2-phenylenebis (methan-1-yl- 1ylidene)) diethane-1, 2-diamine] with 2-benzoyl benzoic acid. Schiffbase ligands have been separated and categorized by 1H, 13 C-NMR, (CHN) elemental analysis, UV-visible, mass spectroscopy and FTIR methods. Ten new coordination complexes were prepared and structurally diagnosed: [M(L1)Cl2] and [M2(L2)Cl2] where M(II) = Mn (II), Co(II), Ni(II), Cu(II) and Hg(II). The complexes have been typified by FTIR, UV-visble atomic absorption, molar conductance elemental analysis, and magnetic susceptibility. The details of the ligand (H4L1) compounds are getting a
... Show MoreEnticed by the present scenario of infectious diseases, four new Co(II), Ni(II), Cu(II), and Cd(II) complexes of Schiff base ligand were synthesized from 6,6′-((1E-1′E)(phenazine-2,3-dielbis(azanylidene)-bis-(methanylidene)-bis-(3-(diethylamino)phenol)) (
The Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreNew complexes of the type [ML2(H2O)2] ,[FeL2(H2O)Cl] and [VOL2] were M=Co(II),Ni(II) and Cu(II) ,L=4-(2-methyl-4-oxoquinazoline-3(4H)-yl) benzoic acid were synthesized and characterized by element analysis, magnetic susceptibility ,molar conductance ,FT-IR and UV-visible. The studies indicate that the L acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes are found to be octahedral except V(IV) complex is square pyrimde shape . The structural geometries of compounds were also suggested in gas phase by theoretical treatments, using Hyper chem-6 program for the molecular mechanics and semi-empirical calculations, addition heat of formation(?Hf ?) and binding energy (?Eb)for the free ligan
... Show MoreThis work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chem
... Show MoreA laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 μm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 μm), compa
... Show More