Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using a training data rather than cross validation. The decision tree algorithm J48 is applied to detect and generate the pattern of attributes, which have the real effect on the class value. Furthermore, the experiments are performed with three machine learning algorithms J48 decision tree, simple logistic, and multilayer perceptron using 10-folds cross validation as a test option, and the percentage of correctly classified instances as a measure to determine the best one from them. As well as, this investigation used the iteration control to check the accuracy gained from the three mentioned above algorithms. Hence, it explores whether the error ratio is decreasing after several iterations of algorithm execution or not. Conclusion It is noticed that the error ratio of classified instances are decreasing after 5-10 iterations, exactly in the case of multilayer perceptron algorithm rather than simple logistic, and decision tree algorithms. This study realized that the TPS_pre is the most common effective attribute among three main classes of examined dataset. This attribute highly indicates the BC inflammation.
A batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92
... Show MoreThe purpose of this research was to evaluate rice husk functionalized with Mg-Fe-layered double hydroxide (RH-Mg/Fe-LDH) as an adsorbent for the removal of meropenem antibiotic (MA) from an aqueous solution. Several batch experiments were undertaken using various conditions. Based on the results, the optimal Mg/Fe-LDH adsorbent with a pH of 9 and an M2+/M3+ ratio of 0.5 was associated with the lowest particle size (specifically. 11.1 nm). The Langmuir and Freundlich models were consistent with the experimental isotherm data (R2 was 0.984 and 0.993, respectively), and MA’s highest equilibrium adsorption capacity was 43.3 mg/g. Additionally, the second-order model was consistent with the adsorption kinetic results.
Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreThe objective of this work was to study the effect of oral administration of Cyperus esculentus (CE) and its alcoholic extract on sperm function parameters in prepubertal mice as a model for human .The animals were divided into three groups each contains 6 animals .Group 1 was treated with 150 mg/ kg body weight /day of crude CE, group 2 was treated with same dose of alcohol extract of CE and group 3 regarded as control throughout six weeks period. The results showed a significant (p> 0.05) increase in the mean of sperm concentration ,sperm motility percent and progressive sperm motility between treated groups and control . There was no differences among groups in the mean of sperm normal morphology and sperm viability . No significa
... Show More
