Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using a training data rather than cross validation. The decision tree algorithm J48 is applied to detect and generate the pattern of attributes, which have the real effect on the class value. Furthermore, the experiments are performed with three machine learning algorithms J48 decision tree, simple logistic, and multilayer perceptron using 10-folds cross validation as a test option, and the percentage of correctly classified instances as a measure to determine the best one from them. As well as, this investigation used the iteration control to check the accuracy gained from the three mentioned above algorithms. Hence, it explores whether the error ratio is decreasing after several iterations of algorithm execution or not. Conclusion It is noticed that the error ratio of classified instances are decreasing after 5-10 iterations, exactly in the case of multilayer perceptron algorithm rather than simple logistic, and decision tree algorithms. This study realized that the TPS_pre is the most common effective attribute among three main classes of examined dataset. This attribute highly indicates the BC inflammation.
A new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreWater saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreBackground: Although various imaging modalities are available for evaluating suspicious breast lesions, ultrasound-based Shear-Wave Elastography (SWE) is an advanced, non-invasive technique complementary to grayscale sonography. This technique evaluates the elasticity of a specific tissue by applying sonic pressure to that tissue.
Objective: The aim is to assess the role of SWE in evaluating solid breast masses in correlation to histopathological study results.
Subjects and Methods: This prospective study was done in a tertiary care teaching hospital from September 2019 to August 2020. A study population of 50 women aged 18 years or above with an
... Show MoreThe pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases, 
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This 
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with 
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO) 
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as 
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques, 
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with differ
In this work the parameters of plasma (electron temperature Te,
electron density ne, electron velocity and ion velocity) have been
studied by using the spectrometer that collect the spectrum of
plasma. Two cathodes were used (Si:Si) P-type and deposited on
glass. In this research argon gas has been used at various values of
pressures (0.5, 0.4, 0.3, and 0.2 torr) with constant deposition time
4 hrs. The results of electron temperature were (31596.19, 31099.77,
26020.14 and 25372.64) kelvin, and electron density (7.60*1016,
8.16*1016, 6.82*1016 and 7.11*1016) m-3. Optical properties of Si
were determined through the optical transmission method using
ultraviolet visible spectrophotometer with in the range
(
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreIn this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show More