Preferred Language
Articles
/
sxY2LIcBVTCNdQwCDzvf
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporating reservoir properties and production data of previous wells.</p><p>This study used the Artificial Neural Network (ANN) that has been programmed in a manner to predict the cumulative oil produced for a certain grid by providing the corresponding properties of the grid. The network has been validated with real data collected from a number of drilled hypothetical wells. Furthermore; the validated network used to simulate the field parts that have not been drilled yet, to predict the corresponding cumulative oil for each grid. Field-scale simulation has been carried out and new horizontal wells have been allocated using the validated prepared data by the Artificial Neural Network Algorithm and an approved Iraqi reservoir model. Finally, different optimization scenarios have been investigated on the overall field recovery performance.</p>
Scopus Crossref
View Publication
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Trends Technological And Science ,engineering
Automated Sorting for Tomatoes using Artificial Neural Network
...Show More Authors

A .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr

... Show More
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of East Baghdad Oil Field By Clusters of Horizontal Wells
...Show More Authors

There are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter.

East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells.

   It is important to say that presence of of  horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of East Baghdad Oil Field By Clusters of Horizontal Wells
...Show More Authors

There are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter. East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells.    It is important to say that presence of of  horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling new horizont

... Show More
Crossref (2)
Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Application of artificial neural network to predict slug liquid holdup
...Show More Authors

Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus (4)
Scopus
Publication Date
Thu Feb 29 2024
Journal Name
International Journal Of Design &amp; Nature And Ecodynamics
Artificial Neural Network Assessment of Groundwater Quality for Agricultural Use in Babylon City: An Evaluation of Salinity and Ionic Composition
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation
...Show More Authors

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

View Publication Preview PDF
Crossref