Preferred Language
Articles
/
sxY2LIcBVTCNdQwCDzvf
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporating reservoir properties and production data of previous wells.</p><p>This study used the Artificial Neural Network (ANN) that has been programmed in a manner to predict the cumulative oil produced for a certain grid by providing the corresponding properties of the grid. The network has been validated with real data collected from a number of drilled hypothetical wells. Furthermore; the validated network used to simulate the field parts that have not been drilled yet, to predict the corresponding cumulative oil for each grid. Field-scale simulation has been carried out and new horizontal wells have been allocated using the validated prepared data by the Artificial Neural Network Algorithm and an approved Iraqi reservoir model. Finally, different optimization scenarios have been investigated on the overall field recovery performance.</p>
Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Statistical Sciences
Use the robust RFCH method with a polychoric correlation matrix in structural equation modeling When you are ordinal data
...Show More Authors

View Publication
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Land use change in Baghdad City and assessment of the Jadriyah and Umm Al- Khanazeer Island Important Bird Area (IBA) from 1984 to 2020
...Show More Authors

Land use change, particularly the expansion of urban areas and associated human activities at the expense of natural and semi-natural areas, is a major ecological issue in urban areas around the world. Climate change being a very strong additional driver for changing the temperature and habitat in the cities. This also applies to Baghdad, Iraq, where urbanisation and climate change exerts a major pressure on the natural habitats of the city, and thus may affect the ability of city planners to adapt to future climate change scenarios. Here we present evidence of substantial growth in urban areas, increases in temperature, and degradation of natural vegetation within Baghdad city by using Remote Sensing techniques and an assessment for the

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
NEW DESCRIPTION OF THE LARVAL STAGE OF LATIPALPIS (PALPILATIS) JOHANIDESI NIEHUIS, 2002 (COLEOPTERA, BUPRESTIDAE) FROM ERBIL PROVINCE, KURDISTAN REGION, IRAQ
...Show More Authors

   The present study introduced a new description of the last larval instar of the oak tree borer, Latipalpis johanidesi Niehuis, 2002 (Coleoptera, Buprestidae). The larval specimens were collected from the oak trees within the mountainous areas, Erbil governorate, Iraqi Kurdistan Region, during the beginning of April till the end of May 2019.

   Schematic sketches were provided to illustrate unclear morphological features, and the results presented importance morphological evidence for confirming the identification of this species in the larval stage precisely.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
NEW RECORD OF THE LAND SNAIL POLYGYRA CEREOLUS (MEGERLE VON MÜHLFELD, 181 8 ) (GASTROPODA, STYLOMMATOPHORA, POLYGYRIDAE) FOR MALACOFAUNA OF IRAQ
...Show More Authors

In this study, the specimens of land snails Polygyra cereolus (Megerle v on Mühlfeld t , 181 8
(Gastropoda, Stylommatophora, are collected between March and April 2021
from gardens and nurseries in Baghdad province, this species was recorded as a new record to
Iraq molluscan fauna. Description of the most important characteristics, measurements of the
shell are presented with digital p photographs, subsequently, this study represents the first record
of the Polygyridae in Iraq.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Russian Journal Of Organic Chemistry
Synthesis and Study of the Biological Activity of New Compounds Derived from 4-(5-Phenyl-1,3,4-oxadiazole-2-yl)aniline
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison between the estimated of nonparametric methods by using the methodology of quantile regression models
...Show More Authors

This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them

Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Manufacturing and improving the characteristics of the isolation of concrete composites by additive Styrofoam particulate
...Show More Authors

View Publication
Scopus (27)
Crossref (17)
Scopus Clarivate Crossref