Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the :H thin films as pure, doped with 3.5% of Al (p-type) and that doped with 3.5% As (n-type), were proposed.
One of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7,
The eff ect of partial substitution for lanthanum (La) on the structural properties of the compound Y1-xLaxBa4Cu7O15+δ were studied. The variation of (x) are x=0.1, 0.2 and 0.3, which was synthesized by solid state reaction method. The mixed powder was pressed with pressure (7 ton / cm2) as a disc (1.5 cm) diameter and a thickness of (0.25 to 0.3 cm). The samples were sintering by 120 °C / hour with a changing rate from room temperature to 850 ° C through 72 hours. XRD analysis using to calculate crystal size, strain and degree of crystallinity. It was found all samples have orthorhombic structure and change of structure with increasing lanthanum concentration. It was shown that the change lanthanum concentrations of all our samp
... Show MoreThe aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue
... Show MoreCohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were de
... Show MoreThis paper displays a survey about the laboratory routine core analysis study on ten sandstone core samples taken from Zubair Reservoir/West Quarna Oil Field. The Petrophysical properties of rock as porosity, permeability, grain's size, roundness and sorting, type of mineral and volumes of shales inside the samples were tested by many apparatus in the Petroleum Technology Department/ University of Technology such as OFITE BLP-530 Gas Porosimeter, PERG-200TM Gas Permeameter and liquid Permeameter, GeoSpec2 apparatus (NMR method), Scanning Electron Microscopy (SEM) and OFITE Spectral Gamma Ray Logger apparatus. By comparing all the results of porosity and permeability measured by these instruments, it is clear a significant vari
... Show MoreThe research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.
Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.
Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel
... Show MoreThe aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MoreOverlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
In this research, the geotechnical properties of the soil profile in Hilla city within Babylon Governorate in the middle parts of Iraq are described. The geotechnical data at the specific sites were collected from some geotechnical investigation reports performed at some selected locations. This article is devoted to studying the distribution of soil properties (the physical and mechanical) in the horizontal and vertical directions. Moreover, a correlation between different physical and mechanical properties is performed. The correlation is executed using statistical analysis by Microsoft Excel Software (2016). From the regression results, it was found that the nature of the soil is c