Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the :H thin films as pure, doped with 3.5% of Al (p-type) and that doped with 3.5% As (n-type), were proposed.
In this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.
The research includes the study and calculation of the modulation function of Optical Semiconductor Fractal Modulator and spatial frequency for different values of Silicon modulator transmittance percentage(10%,35%,45%,58%),it found the relation between the modulation function of Silicon and spatial frequency, the exponential relation of all values of the transmittance , the best state of modulation function when the value of transmittance is T=58% ,also the research includes the study of the relation of transmittance with different values of refractive index of Silicon . So the research involves building a computer program of output data which would relate to fractal optical modulation made of semiconductor mate
... Show MoreDiesel generators are used in various locations throughout Baghdad city, central Iraq, when the public electricity power is in outage. The main purpose of the current research is to investigate possible changes in certain biochemical parameters in the blood of operators of diesel generators in different locations Baghdad city, at both Rusafa and Karkh sides. The workers were divided according to the number of working years.
Serum urea, creatinine, alkaline phosphatase (AlP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total serum bilirubin (TSB), and glomerular filtration rate (GFR) were analyzed in samples from forty wo
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreThe development in the field of medical physics has led to the use of devices that
are manufactured under normal conditions to make tremendous progress in the
world of development in medical treatment by using these devices with modern
techniques by reducing the use of antibiotics and relying on these tools and devices
that link between physics and modern therapeutic medicine. In this research, a nonthermal
plasma system for argon gas operated at normal atmospheric pressure was
designed, this system was applied on Pseudomonas Aeruginosa bacteria isolated
from burn patients from Yarmouk Teaching Hospital. These bacteria were exposed
to this system, the results showed that these bacteria were killed at time (5 min)
In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi
... Show MoreWe have theoretically investigated the in-plane lattice thermal conductivity of Zn4Sb3single quantum well structure taking into account spatial confinement of phonons. The calculations were carried out for free-surface quantum wells with thickness 8.5nm in the room temperature. We show that the lattice thermal conductivity is a significant reduce. The reduction is mostly due to the drop in the average group velocity caused by the spatial confinement of acoustic phonons and the corresponding increase in phonon relaxation rates. The predicted decrease is important for the anticipated applications of Zn4Sb3 nanostructure materials for room-temperature thermoelectric devices. Our theoretical results are in a good agreement with available exp
... Show MoreTo evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show More