Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the :H thin films as pure, doped with 3.5% of Al (p-type) and that doped with 3.5% As (n-type), were proposed.
Concentrations 25, 50 and 100 mg of nano-capsules linolenic acid and non-capsulated fatty acid for 1kg of Milk was used for yogurt manufacture. The results showed no significant differences in the ratio of titration acidity and pH values between all processed treatments at the beginning and during of period storage. The treatments was added to it coated omega-3 by nano method were the least exposed to the oxidation process from the non-capsules omega-3, And for shield of The poly lactic acid had a significant role in the protection of alpha-linolenic acid against lipolysis by the formation of a protective layer to protect the acid from the activity of lipases enzymes, and the addition of fatty acid linolenic to milk was determined the gr
... Show MoreIn this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreAIM: To determine the value of the combination of thin-section 3 mm coronal and standard axial DWI and their impact in facilitating the diagnosis of acute brainstem infarction. METHODS: A cross-sectional study conducted from the 1st of April 2017 to the end of February 2018 on 100 consecutive patients (66% were male, and 34% were female) with isolated acute ischemic infarction in the brainstem. The abnormal MRI findings concerning the ischemic lesions were interpreted on standard axial 5 mm and thin-section coronal 3mm DWI. RESULTS: The mean age of the studied group was 69.2 ± 4.3 for male and 72.3 ± 2.5 years. The standard axial DWI can diagnose 20%, 6.7% and 6.7% of the infarctions in midbrain, pons an
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show MoreElectrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th
... Show MoreThe electrical insulation of the manufacture sulfonated phenol-formaldehyde viscous material (product) has been studied with Polyvinyl-acetate (PVA) and toluene diisocyanate (TDI) blend has been prepared by fixing percentage by weight 3:1 and mixed with different percentages by weight of the product sulfonated phenol formaldehyde viscous mass (SPF). The Fourier transform infrared (FTIR) spectroscopy is done on (SPF) resin powder and prepared film of PVA-TDI-SPF viscous mass. The quality factor (Q), dissipation factor (D), parallel resistance (Rp), series resistance (Rs), parallel capacitance (Cp), series capacitance (Cs) and phase shift (?) are measured. The calculated maximum dielectric constant (??) is 3.49x107 at sample (1) wt.1% SPF vis
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder