Preferred Language
Articles
/
shgEeZQBVTCNdQwC0RmM
Segmentation Moon Images Using Different Segmentation Methods and Isolate the Lunar Craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology of a Moon's surface. Therefore, it is important to study them and determine their characteristics. So, several segmentations methods were used in this study these are: K-Means, Single Feed Forward Neural Network (SFFNN), and hybrid segmentation methods. K-Means method applied with different number of clusters (k), that were used to segment Moon images and isolate lunar craters, where k=1,2,3, and 4 were used. But, all of them did not identify the boundary of craters, only K=3 gave useful results. SFFNN was also used in this work, it trained by a novel method, where weights have been replaced by masks, that create depending on the images features and targets. Thirteen lunar craters were used, ten of them utilized in training process and the last three images were used to test the performance of network. But also this method did not segment lunar images and identify the boundaries of lunar craters clearly. So, in attempt to overcome this problem, the new hybrid method was proposed, that combine the concepts of K Means and SFFNN methods. The main advantages of the proposed hybrid method is that it does not require much data in the training process as it is known in other networks, where the K-Means cluster segmentation method gave a shortcut to correlating masks with images, which led to giving perfect results in a short time. Then, results show the proposed hybrid segmentation method was succeed to segment lunar crater and identify the craters boundaries clearly.

Scopus Crossref
Publication Date
Tue Jan 27 2026
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Techniques
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-

... Show More
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Technique
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using the Balanced Performance Approach to Increase the Effectiveness of Strategic Planning in order to Maximize the Job Satisfaction Rates at the Faculties of Bisha University
...Show More Authors

Purpose: To use the balanced measurement approach as a strategic link for increasing the effectiveness of strategic planning in the direction of achieving satisfaction rates at Bisha University in Saudi Arabia

Design / methodology / approach –The questionnaire survey was used to collect the data of the study from the faculty members at University of Bisha.

Findings –Prove the assumption that the use of the balanced measurement approach - as a strategic planning tool - leads to maximize the satisfaction rates among faculty members at the University of Bisha.

Research limitations/implications-  adopt effective strategic planning in order to achieve

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Speech Compression Using Multecirculerletet Transform
...Show More Authors

Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Sustainable ENERGY by using AI
...Show More Authors

As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,

... Show More
View Publication
Crossref
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Dewatering of Kerosene using Hydrocyclone
...Show More Authors

Water/oil emulsion is considered as the most refractory mixture to separate because of the interference of the two immiscible liquids, water and oil. This research presents a study of dewatering of water / kerosene emulsion using hydrocyclone. The effects of factors such as: feed flow rate (3, 5, 7, 9, and 11 L/min), inlet water concentration of the emulsion (5%, 7.5%, 10%, 12.5%, and 15% by volume), and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the separation efficiency and pressure drop were studied. Dimensional analysis using Pi theorem was applied for the first time to model the hydrocyclone based on the experimental data. It was shown that the maximum separation efficiency; at split ratio 0.1, was 94.3% at 10% co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Eye Detection using Helmholtz Principle
...Show More Authors

            Eye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref