Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology of a Moon's surface. Therefore, it is important to study them and determine their characteristics. So, several segmentations methods were used in this study these are: K-Means, Single Feed Forward Neural Network (SFFNN), and hybrid segmentation methods. K-Means method applied with different number of clusters (k), that were used to segment Moon images and isolate lunar craters, where k=1,2,3, and 4 were used. But, all of them did not identify the boundary of craters, only K=3 gave useful results. SFFNN was also used in this work, it trained by a novel method, where weights have been replaced by masks, that create depending on the images features and targets. Thirteen lunar craters were used, ten of them utilized in training process and the last three images were used to test the performance of network. But also this method did not segment lunar images and identify the boundaries of lunar craters clearly. So, in attempt to overcome this problem, the new hybrid method was proposed, that combine the concepts of K Means and SFFNN methods. The main advantages of the proposed hybrid method is that it does not require much data in the training process as it is known in other networks, where the K-Means cluster segmentation method gave a shortcut to correlating masks with images, which led to giving perfect results in a short time. Then, results show the proposed hybrid segmentation method was succeed to segment lunar crater and identify the craters boundaries clearly.
Graphite nanoparticles were successfully synthesized using mixture of H2O2/NH4OH with three steps of oxidation. The process of oxidations were analysis by XRD and optics microscopic images which shows clear change in particle size of graphite after every steps of oxidation. The method depend on treatments the graphite with H2O2 in two steps than complete the last steps by reacting with H2O2/NH4OH with equal quantities. The process did not reduces the several sheets for graphite but dispersion the aggregates of multi-sheets carbon when removed the Van Der Waals forces through the oxidation process.
Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreDifferent solvents (light naphtha, n-heptane, and n-hexane) are used to treat Iraqi Atmospheric oil residue by the deasphalting process. Oil residue from Al-Dura refinery with specific gravity 0.9705, API 14.9, and 0.5 wt. % sulfur content was used. Deasphalting oil (DAO) was examined on a laboratory scale by using solvents with different operation conditions (temperature, concentration of solvent, solvent to oil ratio, and duration time). This study investigates the effects of these parameters on asphaltene yield. The results show that an increase in temperature for all solvents increases the extraction of asphaltene yield. The higher reduction in asphaltene content is obtained with hexane solvent at operating conditions of (90 °C, 4/1
... Show MoreDifferent solvents (light naphtha, n-heptane, and n-hexane) are used to treat Iraqi Atmospheric oil residue by the deasphalting process. Oil residue from Al-Dura refinery with specific gravity 0.9705, API 14.9, and 0.5 wt. % sulfur content was used. Deasphalting oil (DAO) was examined on a laboratory scale by using solvents with different operation conditions (temperature, concentration of solvent, solvent to oil ratio, and duration time). This study investigates the effects of these parameters on asphaltene yield. The results show that an increase in temperature for all solvents increases the extraction of asphaltene yield. The higher reduction in asphaltene content is obtained with hexane solvent at operating conditions of (90 °C
... Show More