Objective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP. Green synthesis of AuNPs and AgNPs by onion peals extract as reducing agent. Nanocomposites were prepared by mixing 10 mL of chitosan Schiff base, 5 mL PVA and 5 mL of PVP with 25 mL of two different concentrations (100, 200 ppm) of AuNPs and AgNPs. In vitro bacterial activities polymer blends and Au, Ag nano composites were performed against pathogenic bacteria such as the Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa and Esherichia coli. Cancer cell line (AMJ-13) cell line. Results: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds. Conclusions: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds.
Urinary tract infection (UTI) is a considerable problem aecting the health of people each year. It is caused by various Gram-positive (G+ve) and Gram-negative (G-ve) pathogens. It is an important illness in the world aecting all age groups across their life span. Objectives: To identify the most common aerobic bacteria that cause UTIs and their antibiotic susceptibility and antimicrobial activity of plant extracts of the males' patients. Materials and methods: The study involved 35 midstream urine samples from the male students (University of Baghdad, Baghdad, Iraq) with suspicious symptoms of UTI, during the period from January-March 2018. Each urine sample was cultured rst on Mannitol Salt Agar and MacConkey agar plates to dierentiate
... Show MoreComplexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4- aminoantipyrine (4-AAP) and tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3). The prepared complexes were characterized using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the two ligands and their complexes against three selected type of bacteria were also examined. The general compositions of the complexes are found to be [M(4-AAP)2(PBu3)2] Cl2 . Where M= Co(II),Ni(II),Cu(II)and Zn(II). Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structures have suggested for all prepare
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreIn this study a new composite nano material was prepared and characterized through the polymerization of inter attuplgie layered m-phenylendiamine with p-kresol. The results indicated that the propagated polymer separated the clay aluminosilicate layers as a two dimensional nano-sheets soaked in the prepared polymer matrix with losing the original fibrous structure of Attuplgite clay.
Salicylaldehyde was react with 4-amino-2,3-dimethyl-1-phenyl-3-Pyrazoline-5-on to produce the novel Schiff base ligand 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazoline-5-on (HL). A new complexes of VO(II), Cr(Ш), Zn(II), Cd(II), Hg(II) and UO2(II) with mixed ligands of bipyridyl and new shiff base ( 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazoline-5-on) (HL) were prepared . All prepared compounds were identified by atomic absorption, FT.IR , UV-Visable spectra and molar conductivity. From the above data, the proposed molecular structure for VO(II) complex is squre pyramidal while (Zn(II), Cd(II), Hg(II)) and ( UO2(II),Cr(III)) complexes are forming tetrahedral and octahedral geometry respectively.
|
|
spectra and J>hysical methods,selected metals,which were Cu11
Zn 11
Mn11,Co11,Fe" and Hg11 were reacted with ligand to &
The optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range (200-1100m) for different composition of polyaniline and polyvinyl Alcohol(PVA ) blends thin films. Polyaniline was prepared in acidic medium to enhancement the solubility and processibility, The optical energy gap (Eopt) refractive index and optical dielectric constant real and imaginary part have been evaluated. The effects of doping percentage of prepared polyaniline on these parameters was discussed and the non –linear behavior for all these parameters was investigated.
One of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable
... Show More