Objective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP. Green synthesis of AuNPs and AgNPs by onion peals extract as reducing agent. Nanocomposites were prepared by mixing 10 mL of chitosan Schiff base, 5 mL PVA and 5 mL of PVP with 25 mL of two different concentrations (100, 200 ppm) of AuNPs and AgNPs. In vitro bacterial activities polymer blends and Au, Ag nano composites were performed against pathogenic bacteria such as the Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa and Esherichia coli. Cancer cell line (AMJ-13) cell line. Results: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds. Conclusions: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds.
New Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N,N'E,N,N'E)-N,N'-(cyclohexane-1,3-diylidene)bis(4- fluoro-3-
... Show MoreGold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show MoreBreast cancer (BC) is first of the top 10 malignancies in Iraq. Dose‐volume histograms (DVHs) are most commonly used as a plan evaluation tool. This study aimed to assess DVH statistics using three‐dimensional conformal radiotherapies in BC in an adjuvant setting.
A retrospective study of 70 histologically confirmed women diagnosed with BC was reviewed. The study was conducted between November 2020 and May 2021, planning for treatment with adjuvant three‐dimensional conformal radiotherapies. The treatment plan used for each woman was based on an analysis of the volumetric dose, inclu
The multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2,Zn+2 and Cd+2) complexes of quodridentats Schiff base derived from (2-hydroxy benzaldehyde and 4,4'-methylenedianiline as primary ligand and 3-picoline (3-pic) secondary ligand have been synthesized and characterized on the basis of their 1H ,13C-NMR, FT-IR, UV-Vis spectroscopy, conductivity measurements, elemental analysis, and magnetic moments, metal to ligands ratio in all complexes has been found to be (1:1:2) (M:Schiff base:3-pic), Schiff base behaves as neutral tetra dentate ligand with (N2,O2) system from the results obtained, the following general formula has suggested for the prepared complexes [M+2(2-mbd)(3-pic)2] and octahedral stereochemistry, Where M+2 = (Mn , Co , Ni
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
The mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms
. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show More