Objective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP. Green synthesis of AuNPs and AgNPs by onion peals extract as reducing agent. Nanocomposites were prepared by mixing 10 mL of chitosan Schiff base, 5 mL PVA and 5 mL of PVP with 25 mL of two different concentrations (100, 200 ppm) of AuNPs and AgNPs. In vitro bacterial activities polymer blends and Au, Ag nano composites were performed against pathogenic bacteria such as the Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa and Esherichia coli. Cancer cell line (AMJ-13) cell line. Results: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds. Conclusions: The prepared AgNPs and AuNPs were characterized by UV-visible spectroscopy, SEM microscopy and XRD analysis. UV-vis spectrum of AuNPs at 543 nm and AgNPs at 425 nm, particles size of AuNPs 24.74 nm and AgNPs 18.77 nm. The polymer blends and nano composites were characterized by FT-IR, SEM, DSC and TGA. DSC analysis investigated the polymer blend and nano composites shows a good thermal stability for all prepared compounds. The inhibition zone of blend and nanocomposites The Inhibition zone of blend and Nano composites ranging between (8-15) millimetre with concentration of 20 mg. The inhibition rate of blend and Nanocomposites ranging between (1.33 – 77.33) for all compounds. IC 50 of blend and Nanocomposites ranging between (26.04 - 183.56) µg for all compounds.
Background: Colorectal Cancer (CRC) is one of the most serious health problems and Herpes viridae may hasten the progression of colon cancer. Aim: The purpose of conducting this research is to investigate the existence of Herpes Simplex Virus (HSV1) infection in samples of Colorectal Cancer (CRC) compared with normal tissue. Material and Methods: 40 samples of tissues (30 patients ) with CRC, and (10 samples) of normal tissue (without cancer) were obtained, for immunohistochemically analysis of Herpes Simplex Virus (HSV1) expression Results: The results showed no significant data to justify the link between both Herpes Simplex Virus (HSV1) and human colorectal cancer. Despite of presence of Herpes Simplex Virus (HSV1) found in
... Show MoreResin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This
The solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MorePhenytoin selective electrodes were constructed based on penytoin-phosphotungstate (Ph-PT) complex with different plasticizers; di-butyl phosphate (DBP), tri-butyl phosphate (TBP), di-butyl phthalate (DBPH),and o-nitro phenyl octyl ether (NPOE) phthalate. The electrodes based on DBPH, ONPOE plasticizers gave Narnistain slope which are, 56.4 and 55.3mV/decade with detection limit of 1.9x10-5 M , 1.8x10-5 and concentration range 10-1 to 10-4 M and pH range 3.0 – 8.0. The electrodes based on TBP and DBP showed non-Nernistain slopes, 40.2,40.5 mV/decade for both plasticizers. Interfering of some cations was investigated and shows no interfering with electrodes response. Potentiometric methods were used for measuring phenytion in
... Show MoreA transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show MorePolymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show More

