Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThis study reports testing results of the transient response of T-shape concrete deep beams with large openings due to impact loading. Seven concrete deep beams with openings including two ordinary reinforced, four partially prestressed, and one solid ordinary reinforced as a reference beam were fabricated and tested. The effects of prestressing strand position and the intensity of the impact force were investigated. Two values for the opening’s depth relative to the beam cross-section dimensions were inspected under the effect of an impacting mass repeatedly dropped from different heights. The study revealed that the beam’s transient deflection was increased by about 50% with gre
Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreThe research aims to develop alternatives to transportation at the entrance to the Educational City (University of Baghdad) during the morning and evening peaks, which result from of the traffic congestion at the entrances to the educational city (the University of Baghdad), and affects the emotional, functional, and social performance of the whole city, and leads to hotbeds of confluence and congestion at the entrances in the morning and evening peaks. This movement was measured on the ground for pedestrians and vehicles. Some criteria were adopted to determine the density of road length to the area and density of roads for the number of users and the rate of the area served by roads. The research reviews the experiences of some
... Show MoreRutting is one of the major distresses in pavement. The objective of this paper is to develop an improved asphalt binder grading system for Iraq based on the principal of Superpave system, and increasing performance grade of product asphalt binder in Iraq using polymers without raising the viscosity of the binder. Two types of polymers are used, Plastomers, Functionalized Polyethylene (PE) which is developed by asphalt research group in Wisconsin University in the USA, and Elastomers, Styrene Butadiene Styrene (SBS) with and without cross linker. Mastercurve are drown for these modified binders, Rolling thin film aged, to show effects on rheological properties at high temperature for complex modulus (G*) and phas
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThe current study included a review of the registration and description of the Theretra alecto Boi, 1827 (Levant hawk moth), samples were collected from various areas of the Baghdad belt and the provinces of the Middle Euphrates, confirmation in the description was on the most important parts of the body included the head and it's appendages, pronotum, wings as well as male and female genitalia. The morphological characteristics under study were enhanced by illustrations and images. Information on the locations and date of the collection was also confirmed. This study aims to identify the most important characteristics of the diagnosis of the species and the review of appearance variations, especially the analytical style of wings, coupling
... Show More