Preferred Language
Articles
/
shf8sZMBVTCNdQwC7uks
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Wed May 01 2024
Journal Name
Journal Of Engineering
Orbital Prosthesis Rehabilitation in Biomedical Engineering by Means of Computer Vision-Photogrammetry and 3D Prototyping
...Show More Authors

Eye loss may be caused as a result of eye trauma, accidents, or malignant tumors, which leads the patient to undergo surgery to remove the damaged parts. This research examines the potential of computer vision represented by Structure from Motion (SfM) photogrammetry in fabricating the orbital prosthesis as a noninvasive and low-cost technique. A low-cost camera was used to collect the data towards extracting the dense 3D data of the patient facial features following Structure from Motion-Multi View Stereo (SfM-MVS) algorithms. To restore the defective orbital, a Reverse Engineering (RE) based approach has been applied using the similarity RE algorithms based on the opposite healthy eye to rehabilitate the defected orbital precisely

... Show More
View Publication
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Crossref (8)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

View Publication
Scopus (12)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Studying of Some Mechanical Properties of Reactive Powder Concrete Using Local Materials
...Show More Authors

This research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59%  have been achieved for reinforced RPC contains  910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Human Recognition Using Ear Features: A Review
...Show More Authors

Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time.  In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D

... Show More
View Publication
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Jurnal Teknologi
HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW
...Show More Authors

Preserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Sep 03 2018
Journal Name
Al-academy
A new vision for the classic in contemporary fashion designResearch
...Show More Authors

        fashion designers who have benefited greatly from the mobilization of ancient aesthetic ideas in the heritage of the people and guaranteed in their productions so that there is no change In the aesthetic value created by the designers of the research in the ancient heritage to find new signs that reflect the connection of man to the present as the aesthetic value of all the man created by the designs of fabrics and fashion through the ages      The problem of research was determined in the absence of a precise understanding of the nature of classical thought in fashion and the absence of a clear perception of the sustainability of this thought in contemporary fashion. He

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref