Five
Objectives: Two derivatives of cephalexin were synthesized by reaction with isatin-glycine Schiff base and bromoisatin-glycine Schiff base separately. Methods: Cephalexin was linked through the amine group to isatin glycine and bromoisatin glycine Schiff bases by amide bond formation. Results: These derivatives were characterized by FT-IR, H-NMR, elemental CHN analysis and then tested for their antimicrobial activity compared to cephalexin against gram-positive, gram-negative bacteria and Candida albicans fungi. Conclusion: The two compounds showed better activity against Staphylococcus aureus, compound 3b is more active against Escherichia coli, and compound 3a is more active against Klebsiella pneumonia.
A variety of new phenolic Schiff bases derivatives have been synthesized starting from Terephthaladehyde compound, all proposed structures were supported by FTIR, 1H-NMR, 13C-NMR, Elemental analysis, some derivatives evaluated by Thermal analysis (TGA).
A new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
A new four series of 2,2′-([1,1′- phenyl or biphenyl]-4,4′-diylbis(azanediyl)) bis(N′-((E)-1-(4-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI]a,b and 1,1′-(2,2′-([1,1′- phenyl or biphenyl]-4,4′-diyl bis(azanediyl)) bis- (acetyl)) bis(3-(4-ethoxyphenyl)-1H-pyrazole-4-carbalde hyde) [XII-XVIII]a,b have been synthesized by varying terminal lateral alkoxy chain length (n = 1–3, 5–8), central linkage group (phenyl or biphenyl) and induced pyrazole heterocyclic ring in the main chain. The last two series were synthesized by the cyclization of substituted acetophenone hydrazones with Vilsmeier–Haack reagent (DMF/POCl3) to produce 4-formylpyrazole derivatives. The chemical structures of the synthesized compounds were examine
... Show MoreIn this research two series of the new derivatives of Trimethoprim and paracetamol drugs have been prepared which known as a high medicinal effectiveness. Series (A) is including the interaction of diazonium salt of trimethoprim and coupling with some substituted phenol compounds (2-amino phenol, 3-ethyl phenol, 1-naphthol, 2-nitro phenol, Salbutamol). Series (B) is including the interaction coupling alkali solution of paracetamol with diazonium salt of some substituted aniline compounds (Benzedine, 2, 3-di chloro aniline, Trimethoprim, Anilinium chloride, 2-nitro- 4-chloro aniline).Chemical structures of all synthesized compounds were confirmed by UV-visible and FTIR spectroscopy.
A series of new coumarin and N-amino-2-quinolone derivatives have been synthesized. The reaction of coumarin (1) with excess of Hydrazine hydrate 98% yielded 1-amino-2-quinolone (2), Compound (2) was reacted with different Sulfonyl chloride to yield Sulfonamides [ N-(2-oxoquinolin-1(2H)-yl) methane sulfonamide (3), N-(2-oxoquinolin-1(2H)-yl) Benzene sulfonamide (4) and 4-methyl-N-(2-oxoquinolin-1(2H)-yl) benzene sulfonamide (5) ], while reaction of 2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid (8) with different amines yielded compounds [ 2-(4-methyl-2-oxo-2H-chromen-7-yloxy)-N-(2-oxoquinolin-1(2H)-yl) acetamide (9) and N-(5-methyl-1,3,4-thiadiazol-2-yl)-2-(4-methyl-2-oxo-2H-chromen-7-yloxy)acetamide (10) ] th
... Show MoreIn this work, novel compounds of hydrazones derived from (2,4-dinitrophenyl) hydrazine were synthesized. Benzamides derivatives and sulfonamides derivatives were prepared from p-amino benzaldehyde. Then these compounds were condensed with (2,4-dinitrophenyl) hydrazine through Imine bond formation to give hydrazones compounds. The compounds were characterized using FT-IR (IR Affinity-1) spectrometer, and 1HNMR analyses. The majority of the compounds have a moderate antimicrobial activity against “Gram-positive bacteria staphylococcus Aureus, and staphylococcus epidermidis, Gram-negative bacteria Escherichia coli, and Klebsiella pneumoniae, and fungi species Candida albicans” using concentrations of 250 µg\ml.