An extensive survey of citrus leaf miner (CLM) , Phyllocnistis citrella Stainton parasites
and predators was conducted during 1998 and 1999 in citrus orchards and nursuries in
Baghdad, Diyala and Wasit .Five eulophid parasites were recorded for the first time on citrus
leaf miner larvae , prepupae and pupae viz. Cirrospilus sp, Pnigalio sp ., Ratzburgiola
incompleta , Tetrasticus sp. and, Neochrysocharis formosa . Parasitism rate was ranged from
15% to 63% Chrysopa carnea , Orius albidipennis , Amblyseius sp . Were observed as
predators on CLM .
The present study provides the first record species of the genus Lithobius Leach, 1814, L. ferganensis (Trotzina, 1894) which was collected from the middle of Iraq. A detailed explanation of the morphology and the diagnostic characters of specimens of both sexes is provided.
The present work deals with five species of parasitic Hymenoptera belonging to Pteromalidae, Eupelmidae and Eurytornidae which have been reared from brachid beetles. A new species, Eurytoma irakensis is described and the species, Bruchocida orientalis Crawford is recorded for the first time from Iraq.
This study identified the genus Coelastrella Chodat, 1922 which was isolated from a sediment sample taken from the Tigris river in Baghdad Governorate, Iraq. The alga was isolated and cultured in modified Chu 10 media and the morphological features of the isolated algae were observed in light microscopy (LM); it showed some characteristic features of this genus, such as its ellipsoidal or lemon- shaped cells, a visible pyrenoid and the chloroplast parietal. To ensure correct identification of the isolated alga, a molecular analysis using 18S rRNA gene and DNA sequencing revealed a match with C. terrestris (Reisigl) Hedewald & N. Hanagata 2002. This species is a new record in Iraq
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreAmong a collection of leafhoppers from Erbil Province in Kurdistan/Iraq, a new species of the genus Arboridia Zakhvatkin, 1946 was designated and described here as a new species to the science. The erection of this species was mainly built on the external characters included the male genitalia. Sites and dates of collections so as the host-plants were verified.
The taxonomy of Ficus L., 1753 species is confusing because of the intense morphological variability and the ambiguity of the taxa. This study handled 36 macro-morphological characteristics to clarify the taxonomic identity of the taxa. The study revealed that Ficus is represented in the Egyptian gardens with forty-one taxa; 33 species, 4 subspecies and 4 varieties, and classified into five subgenera: Ficus Corner, 1960; Terega Raf., 1838; Sycomorus Raf., 1838; Synoecia (Miq.) Miq., 1867, and Spherosuke Raf.,1838; out of them seven were misidentified. Amongst, four new Ficus taxa were recently introduced to Egypt namely: F. lingua subsp. lingua Warb. ex De Wild. & T. Durand, 1901; F. pumila L., 1753; F. rumphii Blume, 1825, and F. su
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More