Standardized uptake values, often known as SUVs, are frequently utilized in the process of measuring 18F-fluorodeoxyglucose (FDG) uptake in malignancies . In this work, we investigated the relationships between a wide range of parameters and the standardized uptake values (SUV) found in the liver. Examinations with 18F-FDG PET/CT were performed on a total of 59 patients who were suffering from liver cancer. We determined the SUV in the liver of patients who had a normal BMI (between 18.5 and 24.9) and a high BMI (above 30) obese. After adjusting each SUV based on the results of the body mass index (BMI) and body surface area (BSA) calculations, which were determined for each patient based on their height and weight. Under a variety of different circumstances, SUVs were evaluated based on their means and standard deviations. Scatterplots were created to illustrate the various weight and SUV variances. In addition to that, the SUVs that are appropriate for each age group were determined. SUVmax in the liver was statistical significantly in obese BMI and higher BSA, p- value <0.001). Age appeared to be the most important predictor of SUVmax and was significantly associated with the liver SUVmax with mean value (58.93±13.57). Conclusions: Age is a factor that contributes to variations in the SUVs of the liver. These age-related disparities in SUV have been elucidated as a result of our findings, which may help clinicians in doing more accurate assessments of malignancies. However, the SUV overestimates the metabolic activity of each and every individual, and this overestimation is far more severe in people who are obese compared to people who have a body mass index that is normal (BMI
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreObjective(s): To determine the impact of Chemotherapy upon the quality of life for patients with chronic myeloid
leukemia in Baghdad city.
Methodology: A descriptive study design was carried out The study was initiated from 30 January 2011 to October
2011.A purposive (non–probability) sample consisted of (130) patients with a chronic myeloid leukemia ,Who
attended to Baghdad Teaching Hospital and National Center for Research and Treatment of Hematology. The
sample criteria was the patients who were 18 years old and above, excluding the patients who suffered from
psychological problems and other chronic illnesses .A questionnaire was adopted and developed from European
Organization Research and treatment of Can
The researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreObjectives: The purpose of the study is to ascertain the relationship between the training program and the socio-demographic features of patients with peptic ulcers in order to assess the efficiency of the program on patients' nutritional habits.
Methodology: Between January 17 and October 30 of 2022, The Center of Gastrointestinal Medicine and Surgery at Al-Diwanyiah Teaching Hospital conducted "a quasi-experimental study". A non-probability sample of 30 patients for the case group and 30 patients for the control group was selected based on the study's criteria. The study instrument was divided into 4 sections: the first portion contained 7 questions about demographic information, the second sect
... Show More