During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2 and nano-CaCO3 based on the overall desirability analysis of physical tests. The viscosity and temperature sensitivity of bitumen were improved by adding nano SiO2 and CaCO3. On the other hand, the asphalt rutting resistance's capabilities were improved at higher temperatures. In contrast, it decreases resistance against fatigue at intermediate temperatures due to the lowest phase angles and higher loss moduli. The BBR test, however, reveals a modest decrease in bituminous anti-cracking.
Coblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
Two grades of paving asphalt with penetration of 46 and 65 are studied for determining changes in their physical and chemical properties caused by ageing.
The ageing process has been conducted on two petroleum paving asphalt cement using thin film oven test at 150, 163 and 175 C, and ageing time 5, 10,15, 20, 25 and 30 hours. The effect of ageing time and temperature on penetration, kinematic viscosity, softening point, solubility in trichloroethylene, heat loss and changes in chemical composition are investigated. The results of thin film oven test process indicte that the asphaltenes concentration of all aged asphalt increases with increasing ageing time, while the opposite was observed for polar-aromatic and naphthene-aromatic. The
The depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreIn this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
Modern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have
... Show MoreAbstract: In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.