The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended and dissolved material to a very high TSS and conductivity removal efficiency of about 99% for both of them. Therefore, it can be said that slow sand filtration would be a promising technology as a tertiary treatment of SBR reactor effluent, and economically achievable as a mean of upgrading wastewater effluents to meet more stringent water quality standards, where treated effluent can be reused for various recreational purposes i.e. gardening and irrigation, as well as for safe discharge.
One of the biggest problems facing many industries particularly oil, is the problem of corrosion, where the metal parts under the influence of the vital factors are eroded during use and storage, therefore, to lift the metal’s ability and to protect it against corrosion, corrosion inhibitors are used. For the first time in this research, polymers which contain sulfur - heterocyclic ring with a thiadiazole base were made. Anti- corrosion polymers were made on two stages, in the first stage, thiadiazole was made from hydrazine hydrate reaction to carbon disulfide, afterwards the first product was reacted with an excess of hydrazine. In the second stage, polymers were prepared by the r
The 4-(?-bromo acetyl)-4?-toluene sulfonanilide (2) was used as key intermediate to synthesize new heterocyclic compounds. This bromo compound was synthesized via sulfonation of amino group of p-amino acetophenone using Hinsburg method with 4-toluene sulfonyl chloride to form 4-acetyl-4?-toluene sulfonanilide (1) which is used as a starting material in this work. This compound was brominated to yield compound (2) which is used as a precursor to synthesize new five and seven membered heterocyclic compounds such as substituted 1,3-oxazoles (3,4), 1,3-thiazole derivatives (5-7), thiourea compounds (8a,b), 1,3-Thiazoline-2-thione compounds (9a-f) and 1,2,5-triazepine compounds (11a-d). The synthesized compounds were identified depending u
... Show MoreProtease enzyme production was studied and optimized as a first step to collect information about solid state fermenter) to produce protease enzyme. A local isolated Aspergillus niger was used for this study with constant spores feeding in every experiment at (105/g). Experiments carried out in conical flasks with (250 ml) containing (10 g) of wheat straw as a substrate with different conditions included temperature, pH, hydration ratio, and fermentation time, the results comprised by measuring protease activity (u). The results showed that the best activity can be obtained at (T = 32°C, t= 100 hrs, pH= 2.5 and hydration ratio is 1:3). On the other hand the results is courage to p
... Show MoreThe current research was conducted to report the synthesis of alumina powder from Iraqi kaolin. The kaolin was transformed to metakaolin by calcinations at temperature 800 °C for three hours. Then the calcined kaolin was treated with (1.5 M) from H2SO4 for 6 hours to form Al2(SO4)3.12H2O solution. The precipitate was dried at 80oC for 10 hours and calcinations at different temperatures for two hours. The samples which result was characterized by X–Ray diffraction (XRD) and X–Ray fluorescence (XRF). The results indicate to the crystalline hydrate aluminum sulfate for the sample that be as – synthesis and when calcinations at 600 oC transformed into aluminum sulfate phase. The phases of alumina which we obtain consisted of a gamma a
... Show MoreThe removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show MorePharmaceuticals are widely distributed in different applications and also released into the environment. Adsorption of Ciprofloxacin HCl (CIPH) on Porcelinaite was studied at ambient conditions. The adsorption isotherms can be well described using the Freundlich and Temkin equations. The pH of the solution influences significantly the adsorption capacity of Porcelinaite, the adsorption of CIPH increased from the initial pH 1.3 and then decreased over the pH rang of 3.8-9. The adsorption is sensitive to the change in ionic Strength, which indicate that electrostatic attraction is a significant mechanism for sorption process. The enthalpy change (ΔH) for the adsorption of CIPH onto Porcelinaite signifies an endothermic adsorption. The ΔG va
... Show MoreAbstract The study aimed at reviewing translation theories proposed to address problems in translation studies. To the end, translation theories and their applications were reviewed in different studies with a focus on issues such as critical discourse analysis, cultural specific items and collocation translation.
