The largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreLead-acid batteries have been used increasingly in recent years in solar power systems, especially in homes and small businesses, due to their cheapness and advanced development in manufacturing them. However, these batteries have low voltages and low capacities, to increase voltage and capacities, they need to be connected in series and parallel. Whether they are connected in series or parallel, their voltages and capacities must be equal otherwise the quality of service will be degraded. The fact that these different voltages are inherent in their manufacturing, but these unbalanced voltages can be controlled. Using a switched capacitor is a method that was used in many methods for balancing voltages, but their respons
... Show MoreThe presence of heavy metals in the environment is major concern due to their toxicity. In the present study a strong acid cation exchange resin, Amberlite IR 120 was used for the removal of lead, zinc and copper from simulated wastewater. The optimum conditions were determined in a batch system of concentration 100 mg/L, pH range between 1 and 8, contact time between 5 and 120 minutes, and amount of adsorbent was from 0.05 to 0.45 g/100 ml. A constant stirring speed, 180 rpm, was chosen during all of the experiments. The optimum conditions were found to be pH of 4 for copper and lead and pH 6 for zinc, contact time of 60 min and 0.35 g of adsorbent. Three different temperatures (25, 40 and 60°C) were selected to investigate the effect
... Show MoreElectrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreAdsorption studies were carried out to test the ability of the Iraqi rice bran (Amber type) to adsorb some metals divalent cations (Cd2+, Co2+, Cu2+, Fe2+, Ni2+, Pb2+, and Zn2+) as an alternative tool to remove these pollutants from water. The Concentrations of these ions in water were measured using flame and flamless atomic absorption spectrophotometry techniques. The applicability of the adsorption isotherm on Langmuir or Freundlisch equation were tested and found to be dependent on the type of ions. The results showed different adsorptive behavior and different capacities of the adsorption of the ions on the surface of the bran. The correlation between the amounts adsorbed and different cation parameters including (electronegativity, io
... Show MoreThe possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
In this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show More