Cognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the existence of optimal combination of parameters such that the power efficiency is maximized. Then we reformulate the objective function to incorporate the throughput. According to different constraints or degree of significance, we may put proper weight to each term so that we could obtain more preferable combination of parameters. Computer simulations have given the optimal solution curve for different weights. We can draw the conclusion that if we put more emphasis on power efficiency, the transmit power is a more critical parameter, however if throughput is more important, the effect of sensing time is significant.
In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show More<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digi
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreThe concentrations of naturally radioactive made occurring and technically enhanced radioisotopes of fly ash samples, collected from Al-Dura thermal power Plant- south of Baghdad, have been investigated using the NaI(Tl) gamma-ray spectroscopy. The average Activity concentrations of the radio elements 238 U, 232Th and 40K in Fly ash samples are measured accurately and found to be 33.860, 32.6 and 644.64Bq/kg respectively. On the whole the radionuclide's concentrations are still below the global average of 50 Bq/kg for 238U and 232Th, but are much higher in 40K, relative to the global average, about 500 Bq/kg. The absorbed gamma doses in air, due to naturally occurring radionuclides in fly ash samples, are measured and found within the ra
... Show MoreThe mass collision energy loss (dE/dX), the mass radiative energy loss (Srad/) and the total mass stopping power of electrons in the energy range of 0.01 MeV up to 1000 MeV has been calculated for Lung, Urea and Skin. The results of the present work for the mass collision stopping power of electrons in Lung, Urea and Skin are in excellent agreement with the standard results given by ESTAR program, where the maximum percentage error between the present calculated values and that of ESTAR program in Lung tissue, Urea and Skin tissue is 0.27%, 0.3% and 0.8% respectively. The mass radiative energy loss of electrons in the same energy range is also calculated using a modified equation, and the results are found to be in very good agreem
... Show MoreThe current research aims to determine the requirements of Trends of International Mathematics and Science Study (TIMSS 2019) and to find out the extent to which the content of science textbooks for grades (1-4) in the Sultanate of Oman includes the requirements of (TIMSS 2019). Only the Cognitive Process dimension has been considered when conducting the analysis. The study population includes all science books from the first to the fourth grade for the academic year 2021-2022. The study identified and organized the requirements in the study tool, which is a list of requirements of (TIMSS 2019). After confirming its validity and reliability, the analysis was performed, and data were collected and analyzed statistically using frequencies
... Show More