By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees of annealing temperature. Additionally, Urbach energy values decrease with an increase in annealing temperature degrees, indicating a reduction in the tail defects and an enhancement in crystal structure through annealing. The produced films' conductivity raise when temperature in the range (RT-473)K increased, demonstrating that they are semiconducting films. At comparatively lower temperature degrees, the conduction is caused by carriers that are stimulated into localized states at the band edges. At relatively higher temperatures, the conductivity appears to be substantially temperature-dependent. As a result, the conduction mechanism results from carriers being excited into extended states beyond mobility edges. The photovoltaic measurement (I–V) properties, open circuit voltage, short circuit current, efficiency and fill factor of (CdS)0.75-(PbS)0.25 heterostructure cells have been examined under 100mW/cm2 . Interestingly, rising annealing had enhanced photovoltaic cell performances; the solar cell had shown its highest efficiency (0.42%) at 573K. From XRD the structures are polycrystalline with cubic and hexagonal structures indicating that there’s a mix of phases of PbS and CdS, the grain size and intensity raise with annealing temperatures.
Leishmania species are the causative agent of a tropical disease known as leishmaniasis. Previous studies on the old world species Leishmania major, showed that the amastigotes form which resides inside the macrophage of the vertebrate host, utilize host’s sphingolipids for survival and proliferation. In this study, gene expression of serine palmitoyltransferase (SPT) subunit two (MmLCB2) of the mouse macrophage cell line (RAW264.7), which is the first enzyme in the de novo sphingolipid biosynthesis, was detected in both infected and non-infected macrophages. This was detected under condition where available sphingolipid was reduced, with the new world species Leishmania mexicana. Results of qPCR analysis showed that there was no differen
... Show MoreIn this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
In this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Eighteen new cyclic imides (maleimides) conncted to benzothiazole moiety through sulfonamide group were synthesized via multistep synthesis.The first step involved preparation of two maleamic acids N-phenylmaleamic acid and N-benzylmaleamic acid via reaction of maleic anhydride with aniline or benzyl amine.Dehydration of the prepared amic acids by treatment with acetic anhydride and anhydrous sodium acetate in the second step afforded N-phenylmaleimide and N- benzyl maleimide which in turn were treated with chlorosulfonic acid in the third step to afford 4-(N-maleimidyl) phenyl sulfonyl chloride and 4-(N-maleimidyl) benzyl sulfonyl chloride respectively.In the Fourth step of this work each one of the two prepared maleimidyl sulfonyl chlorid
... Show MoreDiazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreIn this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
This study designed to prepare ultrafine apixaban (APX) o/w nanoemulsion (NE) based gel with droplet size below 50 nm as a good method for transdermal APX delivery without using permeation enhancer, alternatively, the formulation components itself act as permeation enhancer. APX, a potent oral anticoagulant drug that selectively and directly inhibit coagulation factor Xa, was selected as a good candidate for transdermal delivery as it displays poor water solubility (0.028 mg/mL) and low bioavailability (50%). APX-NE gel was prepared using triacetin, triton-x-100 and carbitol as oil phase, surfactant and cosurfactant respectively, while Carbopol 940 used as a gelling agent. Ex vivo permeation of APX-NE gel through human stratum c
... Show MoreAbstract: Chalcones were used to synthesis series of 2-pyrazoline derivatives and evaluated their antimicrobial and anti-inflammatory activities (E)-1,3-diphenylprop-2-en-1-one (1-5) were synthesized by Claisen-Schmidt Condensation method through the reaction of acetophenone with five various para substituted benzaldehyde in presence of KOH, the reaction monitoring by TLC and the result intermediates were checked by melting point and FT-IR Various 2-Pyrazoline derivatives were prepared by one pot reaction that involved the refluxing of (E)-1,3-diphenylprop-2-en-1-one (1–5) and Hydrazine monohydrate in the presence of glacial acetic acid for 24 hours at a temperature of (45–50) °C fo
... Show More