Preferred Language
Articles
/
sRjJapQBVTCNdQwCixXV
Composite nanostructured growth of (CdS)0.75 (PbS)0.25/Si solar cell and its characterization
...Show More Authors

By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees of annealing temperature. Additionally, Urbach energy values decrease with an increase in annealing temperature degrees, indicating a reduction in the tail defects and an enhancement in crystal structure through annealing. The produced films' conductivity raise when temperature in the range (RT-473)K increased, demonstrating that they are semiconducting films. At comparatively lower temperature degrees, the conduction is caused by carriers that are stimulated into localized states at the band edges. At relatively higher temperatures, the conductivity appears to be substantially temperature-dependent. As a result, the conduction mechanism results from carriers being excited into extended states beyond mobility edges. The photovoltaic measurement (I–V) properties, open circuit voltage, short circuit current, efficiency and fill factor of (CdS)0.75-(PbS)0.25 heterostructure cells have been examined under 100mW/cm2 . Interestingly, rising annealing had enhanced photovoltaic cell performances; the solar cell had shown its highest efficiency (0.42%) at 573K. From XRD the structures are polycrystalline with cubic and hexagonal structures indicating that there’s a mix of phases of PbS and CdS, the grain size and intensity raise with annealing temperatures.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Dec 30 2019
Journal Name
College Of Islamic Sciences
The matter, its wisdom, and models of its applications In Ahmadiyya interpretations Research drawn from a doctoral thesis
...Show More Authors

This study examined the tagged (the matter, its ruling, and examples of its applications in Ahmadiyya interpretations), the study of devising formulas of commissioning, especially the matter from the book of interpretation, which is: (Ahmadiyyeh’s interpretations), and the contemplative of the nature of (Ahmadiyya’s interpretations) realizes that the cognitive, linguistic and juristic knowledge product and the verses of judgments And other is the focus of this immortal travel, as it is truly a comprehensive book containing what the students of knowledge, scholars and the general public need in terms of interpreting the legal verses, and it is not possible to reach an understanding of the Book of God Almighty, and to clarify his purpo

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Buckling Analysis Of Damaged Composite Plates Under Uniform Or Non-Uniform Compressive Load
...Show More Authors

The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Time Dependent Behavior of Engineered Cementitious Composite Concrete Produced from Portland Limestone Cement
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
...Show More Authors

In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Earth And Environmental Science
Time Dependent Behavior of Engineered Cementitious Composite Concrete Produced from Portland Limestone Cement
...Show More Authors

Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut

... Show More
Publication Date
Mon Jan 18 2021
Journal Name
Materials Science And Engineering
Properties of engineered cementitious composite concrete (bendable concrete) produced using Portland limestone cement
...Show More Authors

Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o

... Show More
Publication Date
Tue Nov 15 2022
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
A-mechanical properties of engineered cementitious composite concrete produced from Portland limestone cement
...Show More Authors

Conventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime

... Show More
Publication Date
Fri Sep 01 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Assessing the Radiopacity of Three Resin Composite Materials Using a Digital Radiography Technique
...Show More Authors

Background: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
Gas Sensing of (SnO2)1-x(ZnO)x Composite Associating with Electrical Properties
...Show More Authors

Abstract

Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and  tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Sep 15 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Assessing The Radiopacity of Three Resin Composite Materials Using a Digital Radiography Technique
...Show More Authors

Background: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness

... Show More
View Publication Preview PDF
Crossref