Preferred Language
Articles
/
sRiZVpUBVTCNdQwCKizm
Automated Glaucoma Detection Techniques: A Literature Review
...Show More Authors

Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing on ML and DL techniques were selected. The best performance metrics obtained using ML recorded in the reviewed papers, were for the SVM, which achieved accuracies of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, DRISHTI-GS, and sjchoi86-HRF databases, respectively, employing the REFUGE-trained model, while when deploying the ACRIMA-trained model, it attained accuracies of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36%, in the same databases, respectively. The best performance metrics obtained utilizing DL recorded in the reviewed papers, were for the lightweight CNN, with an accuracy of 99.67% in the Diabetic Retinopathy (DR) and 96.5% in the Glaucoma (GL) databases. In the context of non-healthy screening, CNN achieved an accuracy of 99.03% when distinguishing between GL and DR cases. Finally, the best performance metrics were obtained using ensemble learning methods, which achieved an accuracy of 100%, specificity of 100%, and sensitivity of 100%. The current review offers valuable insights for clinicians and summarizes the recent techniques used by the ML and DL for glaucoma detection, including algorithms, databases, and evaluation criteria.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Room temperature flexible sensor based on F-MWCNT modified by polypyrrole conductive polymer for NO2 gas detection
...Show More Authors

This project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (14)
Crossref (5)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Iraqi Journal Of Science,
Detection of human leukocyte antigen and celiac disease auto antibodies in serum of patients with multiple sclerosis
...Show More Authors

To determine the important pathogenic role of celiac disease in triggering several autoimmune disease, thirty patients with Multiple Sclerosis of ages (22-55) years have been investigated and compared with 25 healthy individuals. All the studied groups were carried out to measure anti-tissue transglutaminase antibodies IgA IgG by ELISA test, anti-reticulin antibodies IgA and IgG, and anti-endomysial antibodies IgA and IgG by IFAT. There was a significant elevation in the concentration of anti-tissue transglutaminase antibodies IgA and IgG compared to control groups (P≤0.05), there was 4(13.33%) positive results for anti-reticulin antibodies IgA and IgG , 3(10%) positive results for anti-endomysial antibodies IgA and IgG . There were 4 pos

... Show More
Publication Date
Sat Jan 12 2013
Journal Name
Pierb
RADAR SENSING FEATURING BICONICAL ANTENNA AND ENHANCED DELAY AND SUM ALGORITHM FOR EARLY-STAGE BREAST CANCER DETECTION
...Show More Authors

A biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis

... Show More
Publication Date
Tue Jul 01 2014
Journal Name
Ieee Transactions On Circuits And Systems I: Regular Papers
Crosstalk-Aware Multiple Error Detection Scheme Based on Two-Dimensional Parities for Energy Efficient Network on Chip
...Show More Authors

Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o

... Show More
View Publication
Scopus (25)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Swarm And Evolutionary Computation
Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks
...Show More Authors

Scopus (34)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
The Determination of Lower Limit Detection of X-Ray Fluorescence for Zinc Powder Suspended in Engine Oil
...Show More Authors

In this work Different weight of pure Zinc powder suspended particles in 4ml base engine Oil were used.
Intensity of Kα Line was measured for the suspended particles ,also for mixture which consist from Zinc particle blended with Engine base Oil. Calibration Curve was drawn between Ikα line Intensity and Zinc concentration at different operation condition. The Lower Limit detection (LLD) and Sensitivity (m) of Spectrometer were determined for different Zinc Concentration (Wt%). The results of LLD and m for Samples were analyzed at Operation Condition of 30KV,17mA is best from Samples were analyzed at Operation Condition of 25KV,15mA

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Change detection of the land cover for three decades using remote sensing data and geographic information system
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Kuwait Journal Of Science
Detection of the most frequent sources of dust storms in Iraq during 2020–2023 using space tools
...Show More Authors

Dust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS so

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref