Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing on ML and DL techniques were selected. The best performance metrics obtained using ML recorded in the reviewed papers, were for the SVM, which achieved accuracies of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, DRISHTI-GS, and sjchoi86-HRF databases, respectively, employing the REFUGE-trained model, while when deploying the ACRIMA-trained model, it attained accuracies of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36%, in the same databases, respectively. The best performance metrics obtained utilizing DL recorded in the reviewed papers, were for the lightweight CNN, with an accuracy of 99.67% in the Diabetic Retinopathy (DR) and 96.5% in the Glaucoma (GL) databases. In the context of non-healthy screening, CNN achieved an accuracy of 99.03% when distinguishing between GL and DR cases. Finally, the best performance metrics were obtained using ensemble learning methods, which achieved an accuracy of 100%, specificity of 100%, and sensitivity of 100%. The current review offers valuable insights for clinicians and summarizes the recent techniques used by the ML and DL for glaucoma detection, including algorithms, databases, and evaluation criteria.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreTo determine the relationship between Helicobacter pylori infection and reproduction disorder (recurrent spontaneous abortion), twenty women patients who undergo spontaneous abortion during first trimester of pregnancy (20-38) years and have been investigated from 2015/12/1 -2016/3/1 and compared to fifteen healthy individuals. All subjects were carried out to measure anti-H. pylori IgA and anti- H. pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA). There was significant elevation (p≤ 0.05) in concentration of anti- H. pylori IgG Abs (6.30± 0.99) compared to control group (4.48± 0.61) and IgA Abs (5.42 ± 0.90 U /ml) as compared to control group (3.92 ± 0.41 U/ml). The percentage of H. pylori IgG and IgA was 20% and 25
... Show MoreWireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show MoreIn order to scrutinize the impact of the decoration of Sc upon the sensing performance of an XN nanotube (X = Al or Ga, and XNNT) in detecting sarin (SN), the density functionals M06-2X, τ-HCTHhyb, and B3LYP were utilized. The interaction of the pristine XNNT with SN was a physical adsorption with the sensing response (SR) of approximately 5.4. Decoration of the Sc metal into the surface of the AlN and GaN led to an increase in the adsorption energy of SN from −3.4 to −18.9, and −3.8 to −20.1 kcal/mol, respectively. Also, there was a significant increase in the corresponding SR to 38.0 and 100.5, the sensitivity of metal decorated XNNT (metal@XNNT) is increased. So, we found that Sc-decorating more increases the sensitivity of GaNN
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show Moren this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and de
... Show MoreAims: The aim of this study was to evaluate the value and accuracy of longitudinal strain in detection of coronary artery disease compared to coronary angiography. Results: The left ventricular longitudinal strain-speckle tracking showed evidence of stenosis of left anterior descending artery, circumflex artery and right coronary artery in (86.1%), (76.4%), and (84.7%) respectively. For the stenosis in left anterior descending artery, the current study showed that the longitudinal strain was a good predictor for presence of significant stenosis with a sensitivity of (93.8%), specificity (75%) and accuracy (91.7%) compared with coronary angiography. For the stenosis in right coronary artery, the left ventricular longitudinal strain had
... Show MoreThe control of water represents the safe key for fair and optimal use to protect water resources due to human activities, including untreated wastewater, which is considered a carrier of a large number of antibiotic-resistant bacterial species. This study aimed to investigate the prevalence of antibiotic-resistance to E. coli in Tigris River by the presence of resistance genes for aminoglycoside(qepA( ,quinolone (gyrA), and sulfa drugs( dfr1 ,dfr17) due to the frequent use of antibiotics and their release into wastewater of hospitals. Samples were collected from three sites on Tigris River: S1( station wastewater in Adhamiya), S2 (station wastewater in Baghdad Medical city hospital), S3 (station wastew
... Show More