4-methylaniline and its Schiff base derivative were intercalated into the Bentonite clay interlayers in a solid state reaction followed by a condensation reaction to produce two organo-clay composites. X-ray diffraction was used to identify the changes in basal spacing of montmorillonite layers which exhibited noticeable alteration before and after the formation of the composites. FT-IR spectra, on the other hand, were utilized for identifying the structural compositions of the prepared materials as well as the formation of the intercalated Schiff base derivative. The surface morphology of the composites was examined by Scanning Electron Microscopy SEM and Atomic Force Microscope AFM, which reflected some differences in the surface of prepared composites as the particle size decreased with the Schiff base formation.
Stable new derivative (L) Bis[O,O-2,3;O,O-5,6(carboxylic methyliden)]L-ascorbic acid was synthesized in good yield by the reaction of L-ascorbic acid with dichloroacetic acid with ratio (1:2) in presence of potassium hydroxide. The new (L) was characterized by 1H,13C-NMR, elemental analysis (C,H) and Fourier Transform Infrared (FTIR). The complexes of the ligand (L) with metal ion, M+2= (Cu, Co, Ni, Cd and Hg) were synthesized and characterized by FTIR, UV-Visible, Molar conductance, Atomic absorption and the Molar ratio. The analysis evidence showed the binding of the metal ions with (L) through bicarboxylato group manner resulting in six-coordinated metal ion.
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThe multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the
... Show MoreThe work involves synthesis of new Schiff bases ([V] a, b and [VI] a, b), pyrazoles [VII] a, b and pyrazolines [VIII] a, b derivatives containing isoxazoline unit starting with chalcones. 4-bromoacetophenone was reacted with 4-hydroxybenzaldehyde or 4-hydroxyacetophenone was reacted with 4-bromobenzaldehyde in basic medium to give chalcone by Claisen-Schemidt reaction. The chalcons [I] a, b was reacted with hydroxylamine hydrochloride to form isoxazolines [II] a, b. which were reacted with ethyl chloro acetate in basic medium to get ester compounds [III] a, b. The condensation new ester [III] a, b with hydrazine hydrate80% yieldedacid hydrazide [IV] a, b. The later compound refluxing with 4-substituted benzaldehyde in dry benzene to give Sc
... Show MoreManganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size in
... Show MoreMefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-t
... Show Moresynthesis, Composition, Spectral, Geometry and Antibacterial Applications ofMn(||),Ni(||),Co(||),Cu(||) and Hg(||) schiff Base complexes of N2O2 mixed donor with 1,10-phenanthroline
A novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the sec
... Show MoreA new ligand [4-chloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylcarb amothioyl) benzamide] (CAP) was synthesized by reaction of P-ChloroBenzoyl isothio cyanate with 4- aminoantipyrine,The ligand was characterized by micro elemental analysis C.H.N.S.,FT-IR,UV-Vis and1H13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(CAP)2(H2O)2]Cl2(M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral