Optical losses represent one of the primary obstacles to increasing the efficiency of silicon solar cells. The recommended solution to minimize optical losses is the use of plasmonic metal nanoparticles; however, they act as recombination centers within the solar cell construction, leading to a decrease in performance. The goal of this article is to introduce cobalt/graphene nanoparticles into the solar cell to minimize the optical losses. An ultra-thin film silicon PIN solar cell of dimensions (400 ×400 ×900) nm3 with ring metal contact shape was designed and numerically investigated using COMSOL Multiphysics software version 6.2 by the finite element method (FEM). Core/shell cobalt-graphene (Co/Gr) nanoparticles are periodically introduced into the cell between two layers (electron transport and active) in a ratio of 50:50 with an inter-spacing of a similar diameter. The Co/Gr parameters, number of nanoparticles (2, 4, 6), radius (10, 20, 30) nm, and shell thickness (1, 2, 4) nm were extensively studied. In addition, the arrangement of the core/shell nanoparticle material was considered. The results manifest the best performance of the proposed cell at 4 nanoparticles of 30 nm radius with 2 nm shell thickness for Co/Gr nanoparticles to get a maximum photocurrent of 26.28 mA/cm2. It is concluded that the optical losses of the Co/Gr core/shell nanoparticles embedded in an ultra-thin film silicon solar cell are significantly reduced owing to the increment in the absorption and hence the photocurrent. This enhancement opens a new avenue for further improvements.
This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations.
The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop.
A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%). The percentage
... Show MoreEntropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final
... Show MoreThis work is concerned with the design and performance evaluation of a shell and double concentric tubes heat exchanger using Solid Works and ANSY (Computational Fluid Dynamics).
Computational fluid dynamics technique which is a computer-based analysis is used to simulate the heat exchanger involving fluid flow, heat transfer. CFD resolve the entire heat exchanger in discrete elements to find: (1) the temperature gradients, (2) pressure distribution, and (3) velocity vectors. The RNG k-ε model of turbulence is used to determining the accurate results from CFD.
The heat exchanger design for this work consisted of a shell and eight double concentric tubes. The number of inlets are three and that of o
... Show MoreRM Abbas, AA Abdulhameed, AI Salahaldin, International Conference on Geotechnical Engineering, 2010
The concept of entransy dissipation was determined for new type of heat exchanger (shell and double concentric tubes heat exchanger). Three parameters, hot oil flow rate, temperature of inlet hot oil and pressure drop of system were investigated with this concept (entransy dissipation). The results showed that the value of entransy dissipation of oil and of system which represents the summation of entransy dissipation of both oil and water increased with increasing the flow rate of hot oil and these values were larger when cold water flow rate was doubled. Also they were increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, the pressure drops for hot oil in both shell side and inner tubes
... Show MoreGround state energies and other properties of 2S shell for some atoms as Be(Z=4), B(Z=5), C(Z=6) and N(Z=7) were calculated by using Hartree-Fock wave function. We found the values of potential energies in hartree unit (3.8369, 6.78565, 10.18852 and 14.41089) respectively and the other proprieties like expectation values of the position < r1m > were in agreement with the published results. All the studied atomic properties were normalized.
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds’ delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring t
The Research topic seeks to analyze the "political risk and its component Terrorism Index," which consists of five indicators index, a number of terrorist operations, and the number of dead and wounded, and the size of the physical losses, based search sub-index analysis of material losses for the index terrorism and its impact on the indicators listed on the Iraq Stock Exchange Finance. As for the practical side, it has been use style gradient unrestricted and link the sample represented by ten banks listed on the Iraq Stock Exchange. was Statement the correlation and interaction of variables of the studySearch results produced that the volume of material losses is the most important indicator in the influential force and it explain a v
... Show MoreAbstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t
... Show More