Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alter the wettability of oil-wet calcite to strongly water-wet at all operational conditions. Although limited desorption of silica nanoparticles occurred after exposure to high pressure (20 MPa), nanoparticle adsorption on the oil-wet calcite surface was mainly irreversible. The nanofluid concentration and immersion time played crucial roles in improving the efficiency of diluted nanofluids while salinity was less significant at high pressure and temperature. The findings provide new insights into the potential for nanofluids being applied for improved enhanced oil recovery and carbon sequestration and storage.
The extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.
Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreThe lower Cretaceous sandstones of Zubair and Nahr Umr formations are the main producing reservoirs in Subba oilfield in southern Iraq. Key differences in their petrophysical and depositional attributes exist affecting their reservoir characteristics. The evaluation of well logs and core porosity-permeability data show better reservoir properties in Nahr Formation. The Litho-saturation logs indicate greater thickness of oil-saturated reservoir units for Nahr Unr Formation associated with lower values of shale volume, and higher values of effective porosity. In addition, higher values of permeability for Nahr Umr Formation is suggested by applying porosity-irreducible water saturation cross plot. The reducing reservoir quality of Zub
... Show MoreHydraulic fracturing is considered to be a vital cornerstone in decision making of unconventional reservoirs. With an increasing level of development of unconventional reservoirs, many questions have arisen regarding enhancing production performance of tight carbonate reservoirs, especially the evaluation of the potential for adapting multistage hydraulic fracturing technology in tight carbonate reservoirs to attain an economic revenue.
In this paper we present a feasibility study of multistage fractured horizontal well in typical tight carbonate reservoirs covering different values of permeability. We show that NPV is the suitable objective function for deciding on the optimum number
The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified de
The Upper Campanian-Maastrichtian succession in Buzurgan oil field of Southeastern Iraq consists of Hartha and Shiranish formations. Three facies associations were distinguished in the studied succession. These include shallow open marine environment within the inner ramp, deep outer ramp and basinal environments. The Hartha Formation in the study area was deposited on a shallow carbonate platform with distally steepened ramp setting. The studied succession represents two 3rd order cycles. These cycles are asymmetrical and start with cycle A which is incomplete where the lower part of the Hartha Formation represents the deep outer ramp facies of the transgressive system tract.and the upper part of the Hartha Formation reflects deposition
... Show MoreThe objective of the conventional well testing technique is to evaluate well- reservoir interaction through determining the flow capacity and well potential on a short-term basis by relying on the transient pressure response methodology. The well testing analysis is a major input to the reservoir simulation model to validate the near wellbore characteristics and update the variables that are normally function of time such as skin, permeability and productivity multipliers.
Well test analysis models are normally built on analytical approaches with fundamental physical of homogenous media with line source solution. Many developments in the last decade were made to increase the resolution of transient response derivation to meet the
... Show MoreExamining of 80 feces samples showed that 31 samples of the house and stray cats harbored either single or mixed infection with eight species of parasites and protozoa with a total infection rate 38.75 %.The results on parasite classes are: Toxocara cati (5%), Ancylostoma tubeforme (3.75%), Capillaria felis(3.75%), Isospora sp.(10%), Cryptosporidium parvum(3.75%), Cryptosporidium muris (6.25%), Toxoplasma gondi (3.75%), Giardia sp.(2.5%) infection from feces of cats that showed single, double and triple infections. Our findings revealed the risk for public health, thus preventive measures should be implemented.
Galvanic corrosion of stainless steel 316 (SS316) and carbon steel (CS) coupled in 5% wt/v sulfuric acid solution at agitation velocity was investigated. The galvanic behavior of coupled metals was also studied using zero resistance ammeter (ZRA) method. The effects of agitation velocity, temperature, and time on galvanic corrosion current and loss in weight of both metals in both free corrosion and galvanic corrosion were investigated. The trends of open circuit potential (OCP) of each metal and galvanic potential (Eg) of the couple were, also, determined. Results showed that SS316 was cathodic relative to CS in galvanic couple and its OCP was much more positive than that of CS for all investigated ranges of
... Show More