This paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow ratios of (3, 12, and 20) % depending on tube diameters used. The results were recorded, and the influence of steel tubes and eccentricities on the results was obtained and discussed. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gains in strength and ductility were about 59% and 33% respectively, for the hollow ratio of 20% with e/h = 1. Comparable results to the experimental ones were also obtained by nonlinear finite element analysis (FEA) using ABAQUS software. The comparisons showed good agreement in terms of ultimate loads and load-deflection relationships. In addition, interaction diagrams for the test columns have also been obtained using FEA and strictly compared with similar diagrams belonging to RC columns having no tubes but same hollow ratios.
Asphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreABSTRACT Background: One of the major problems of all ceramic restorations is their probable fracture against the occlusal forces. The objective of this in vitro study was to evaluate the effect of two gingival finishing lines (90°shoulder and deep chamfer) on the fracture resistance of full contour CAD/CAM and heat press all-ceramic crowns. Materials and Methods: Thirty two maxillary first premolars were prepared to receive full contour CAD/CAM (zolid) and heat press (Cergo Kiss) ceramic crowns using a special paralleling device (Parallel-A-Prep). The teeth were divided into four groups according to the type of finishing line prepared. Each crown was cemented to its corresponding tooth using self-etch, self-adhesive dual cure resin ceme
... Show MoreIntroduction: We aimed to assess the impact of adhesive and wires types on the tensile bond strength of fixed lingual retainers. Methods: A total of 160 intact bovine teeth were collected, cleaned, stored in 25% sodium hypochlorite, and randomly assigned to two groups based on the adhesive type: a two-step adhesive and a one-step adhesive. Each group was further divided into four subgroups based on the type of lingual retainer wire, which included (A) 8-strand braided stainless steel wire, (B) three-strand titanium retainer wire, (C) stainless steel chain, and (D) fiber-reinforced retainer. A tensile bond strength test was conducted using a universal testing machine at a controlled speed of 10 mm/min. Result: The 8-strand braided stainles
... Show MoreThrust blocks and restraint joints are the two most popular methods of counteracting the thrust force that generated at pipe fittings (bends, Tee, wye, reducers, dead ends, etc…). Both systems perform the same function, which is to prevent the joints from separating from the pipes. The aim of the study is to review previous studies and scientific theories related to the study and design of thrust blocks and restraint joints to study the behavior of both systems under thrust force and to study the factors and variables that affect the behavior of these systems. The behavior of both systems must be studied because they cannot be abandoned, as each system has conditions whose use is more feasible, scientific, and economic
... Show MoreThe importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show MoreIt is very difficult to obtain the value of a rock strength along the wellbore. The value of Rock strength utilizing to perform different analysis, for example, preventing failure of the wellbore, deciding a completion design and, control the production of sand. In this study, utilizing sonic log data from (Bu-50) and (BU-47) wells at Buzurgan oil field. Five formations have been studied (Mishrif, Sadia, Middle lower Kirkuk, Upper Kirkuk, and Jaddala) Firstly, calculated unconfined compressive strength (UCS) for each formation, using a sonic log method. Then, the derived confined compressive rock strengthens from (UCS) by entering the effect of bore and hydrostatic pressure for each formation. Evaluations th
... Show MoreAim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), a
... Show MoreThe research aims to show the relationship between the use of automated accounting systems technology and its impact on enhancing the efficiency and effectiveness of the internal control system in a sample of Bahraini universities in light of the rapid changes in the electronic business environment. Automated accounting and its impact on enhancing the efficiency and effectiveness of the internal control system, and it is concluded through the analytical study of the research sample that there is a percenta
... Show MoreNanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly
... Show More