Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mechanical properties of the asphalt concrete mixes used for all three purposed layers (i.e., wearing, levelling, and base) at atmospheric temperatures from mild to relatively high. This paper reports on a continuous experimental test for the thermal properties of the optimized hydrated lime-modified mixes. The experiment together with that conducted before provides the required data to characterize the thermomechanical constitutive relations of the optimized hydrated lime-modified mixes. The obtained thermal and mechanical properties thereafter were implemented in a numerical modelling study for a scenario involving pavement exposed to coupled thermal and traffic service conditions. The study has demonstrated that using HL in mineral filler enhances the thermal properties of asphalt concrete, which, however, showed little influence on the local temperature profiles within the pavement structure. The thermal effect is pronounced under the coupled thermomechanical conditions for a pavement exposed to both traffic and climatic impacts. The HL pavement has about 1.5% less deformation, and 39% less stress level under traffic loading only, but the thermal effect increases the maximum total internal tensile stress level by 26% in the HL pavement in winter season. The modelling analysis has shown that the local maximum tensile stress dominates in the surface region of the HL pavement. It will help to reduce the workload of crack repairing and in long term help on saving costs and efforts of maintenance.
The taxonomy of Ficus L., 1753 species is confusing because of the intense morphological variability and the ambiguity of the taxa. This study handled 36 macro-morphological characteristics to clarify the taxonomic identity of the taxa. The study revealed that Ficus is represented in the Egyptian gardens with forty-one taxa; 33 species, 4 subspecies and 4 varieties, and classified into five subgenera: Ficus Corner, 1960; Terega Raf., 1838; Sycomorus Raf., 1838; Synoecia (Miq.) Miq., 1867, and Spherosuke Raf.,1838; out of them seven were misidentified. Amongst, four new Ficus taxa were recently introduced to Egypt namely: F. lingua subsp. lingua Warb. ex De Wild. & T. Durand, 1901; F. pumila L., 1753; F. rumphii Blume, 1825, and F. su
... Show MoreChromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
Organic contaminants are used to be found in industrial wastewater treatment procedures, and heavy metal ion removal is difficult. Photo Fenton reaction activity was exploited in this study to decompose organic contaminants using a functional composite hydrogel. Polyacrylonitrile (PAN), Fe3O4 particles, and graphene oxide make up the hydrogel (GO). It is made from GO/ Fe3O4 and is made using the precipitation technique. GO is made from graphite using the Hummers process. And it has exceptional mechanical strength and Photo-Fenton activity as a result of various breakdown data that were influenced differently, such as H2O2 concentration, dye concentration, temper
... Show MoreNonsteroidal anti-inflammatory drugs (NSAIDs) are drugs that help reduce inflammation, which often helps to relieve pain. In this research new ibuprofen oxothiazolidnone derivatives were synthesized from the reaction of Schiff base derivatives of Ibuprofen with mercapto acetic acid VI a-c, to improve the potency and to decrease the drug's potential side effects, a new series of 4-thiazolidinone derivatives of ibuprofen was synthesized VI a-c . The characterizations of the compounds were identified by using FTIR, 1HNMR technique and by measuring the physical properties.
Water quality assessment offers a scientific basis for water resource development and management. This research aims to assessment of Al-Rustamiya sewage treatment plant depending on annually changes and produces maps that declare changes on parameter during a period (2015-2018). Based on prior Government Department Baghdad Environment data which annually feature changes for samples from Northern Rustamiya have been estimated as a working model. Drawn a map of the Diyala River shows annual changes in the characteristics of the Diyala River, based on northern and southern Rustamiya effluent samples, and Diyala River samples. The characteristics that research focused on were biochemical
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More