Preferred Language
Articles
/
sEK5pZoBMeyNPGM3Ks6L
Combining Electro Fenton With Adsorption Processes for Treatment of Petroleum Refinery Wastewater
...Show More Authors
ABSTRACT<p> This study investigates the elimination of chemical oxygen demand (COD) from an Iraqi petroleum refinery effluent through a combined electro‐Fenton and adsorption process (EF+AC). Response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of FeSO <sub>4</sub> concentration, current density, and electrolysis time on the reduction of COD using the EF technique. According to the results of the analysis of variance (ANOVA) for the EF technique, FeSO <sub>4</sub> concentrations, with a contribution of 40.06%, and current density, with a contribution of 46.35%, exert a considerable influence. The optimum conditions for COD elimination rate (99.06%) and energy consumption (9.805 kWh/kg COD) were achieved using an electrolysis time of 85.12 min, a current density of 25 mA/cm <sup>2</sup> , and a concentration of 1.335 mM FeSO <sub>4</sub> . For the EF+AC process, a central composite design (CCD) was used to determine the influence of the packing level of activated carbon (AC) and the time on the reduction of COD at a constant current density of 5 mA/cm <sup>2</sup> and FeSO <sub>4</sub> concentration of 0.2 mM. The packing level of AC significantly influenced the elimination of COD, with time being the subsequent factor. The results showed that the optimal conditions led to a 98.77% removal of COD, requiring 0.91 kWh/kg COD. This efficiency and energy consumption were attained by using 92% packed AC and allowing the process to run for 85 min. EF+AC was found to have lower energy consumption and a smaller quantity of ferrous sulfate compared to EF. Notably, the current system offers a promising vision by combining the benefits of adsorption and electro‐Fenton for wastewater remediation. </p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Treatment of Furfural Wastewater by (AOPs) Photo-Fenton Method
...Show More Authors

The objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.

 Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Science Of The Total Environment
Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment
...Show More Authors

This study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o

... Show More
View Publication
Scopus (76)
Crossref (77)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Results In Engineering
Electrochemical preparation and characterization of a new configuration SnO2 anode and its application for treating petroleum refinery wastewater
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Treatment of Wastewater Contaminated with Pesticide (Alachlor) by Solar Enhanced Advanced Oxidation Processes
...Show More Authors

The degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l), Fe+2(5- 30 mg/l) and TiO2 (100-500 mg/l) and their relationship with the degradation efficiency were studied.

      The COD removal efficienc

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2024
Journal Name
Ecological Engineering & Environmental Technology
Elimination of Methyl Orange Dye with Three Dimensional Electro-Fenton and Sono-Electro-Fenton Systems Utilizing Copper Foam and Activated Carbon
...Show More Authors

This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 01 2026
Journal Name
Bioresource Technology
Hybrid Sono-Electro-Fenton (SEF) process driven by photovoltaic (PV) energy for sustainable hospital effluent treatment
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Environmental Management
Treatment of vegetable oil refinery wastewater by sequential electrocoagulation-electrooxidation process
...Show More Authors

View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
Optimization of chemical oxygen demand removal from petroleum refinery wastewater by electrocoagulation using tubular electrochemical reactor with a novel design
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Removal of Dissolved Organic Compounds and Contaminants from Wastewater of a Petroleum Refinery by Ion Exchange
...Show More Authors

The efficient removal of dissolved organic compounds (DOC) from wastewater has become a major environmental concern because of its high toxicity even at low concentrations. Therefore, a technique was needed to reduce these pollutants. Ion exchange technology (IE) was used with AmberliteTM IR120 Na, AmberliteTM IR96RF, and AmberliteTM IR402, firstly by using anion and mixed bed system, where the following variables are investigated for the process of adsorption: The height of the bed in column (8,10 and 14 cm), different concentrations of (DOC) content at constant flow rate. The use of an ion exchanger unit (continuous system) with three columns (cation, anion, and mixed bed) was studied.

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Oct 01 2025
Journal Name
Journal Of Environmental Management
Induced electro-fenton process with a new electrochemical reactor design for tetracycline degradation
...Show More Authors

View Publication
Scopus Clarivate Crossref