This research examines the impact of cornering on the aerodynamic forces and stability of a Nissan Versa (Almera) passenger sedan car by introducing novel modifications. These modifications included single inverted wings with end plates as a front spoiler, double‐element inverted wings with end plates as a rear spoiler, and incorporating the ground as a diffuser under the car trunk. The goal is to enhance the performance and stability of conventional passenger cars. To ensure the accuracy of the numerical data, the study utilized multiple methodologies to model the turbulence model, ultimately selecting the most suitable option. This involved comparing numerical data with wind tunnel experimental data using force balance and pressure distribution. Once validated, the computational fluid dynamics (CFD) was employed to analyze the vehicle's aerodynamic performance relative to the straight‐line condition under cornering conditions. The car simulation in a cornering condition was conducted at a representative Reynolds number based on the vehicle length of about 1.3 × 107. The study discovered that asymmetry was a recurring theme regarding surface pressure distribution, with greater prominence under cornering conditions. All modified models exhibited a more favorable lift‐to‐drag ratio than the baseline, indicating improved aerodynamic efficiency. The underbody double‐element diffuser proved most effective for enhancing fuel efficiency and stability. Mesh refinement with a polyhedral algorithm consisting of 11.27 million elements and a computational domain with a frontal area of 91.8 m2 and a curved length of 31 m (˜7 times car length) was crucial for achieving accurate and repeatable results. The study employed multiple turbulence models within the CFD framework. The realizable k‐ε model was chosen due to its balance between accuracy and computational cost for all Nissan Versa models. These findings are limited to the selected parameters and wind tunnel conditions, and further investigations might be needed for extreme driving scenarios.
The administrative leadership relies on a variety of behavioral paths in the functional areas in which it operates, and thus indicates its ability and thus has the upper hand in the organizational events, and in such a way that it can draw lessons and evaluate the results so as to test the expectations within the framework of the changes.
Does the study sample leadership have the characteristics that enable it to contain both crises and environmental stresses?
The aim of the study was to determine the location of the administrative leaders in the system of the study sample from the issue of crises and environmental pressures. The study concluded with a number of conclusions, the m
... Show MoreThe stability and releasing profile of 2:1 core: wall ratio ibuprofen microcapsules prepared by aqueous coacervation (gelatin and acacia polymers coat) and an organic coacervation methods (ethyl cellulose and sodium alginate polymers coat) in weight equivalent to 300mg drug, were studied using different storage temperatures 40°C, 50°C ,60°C and refrigerator temperature 4°C in an opened and closed container for three months (releasing profile) and four months (stability study).It was found that, these ibuprofen microcapsules were stable with expiration dates of 4.1 and 3.1 years for aqueous and an organic method respectively.Aqueous prepared ibuprofen microcapsules were found more stable than those microcapsules prepared by or
... Show MoreThe utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete
... Show MoreIron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .
Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
Al-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed th
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and
... Show MoreIncreased attention to corporate governance with the increasing need for investors and other parties in the Iraqi market for securities of the information credible and confidence and greater transparency in the disclosure as well as the systems of governance lead to raise the value of the company and that by reducing the cost of capital and reduce the cost of financing, as well as that there are indications modern measurement can be adopted by the Iraqi market for securities for the purpose of evaluating the performance of listed companies and then raise their value.
The research problem is that there is no framework or structure of the legal and local rules for the application of corporate governance in Iraq obliges
... Show More